Skip to main content

Graph Drawing via Gradient Descent, \((GD)^2\)

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2020)

Abstract

Readability criteria, such as distance or neighborhood preservation, are often used to optimize node-link representations of graphs to enable the comprehension of the underlying data. With few exceptions, graph drawing algorithms typically optimize one such criterion, usually at the expense of others. We propose a layout approach, Graph Drawing via Gradient Descent, \((GD)^2\), that can handle multiple readability criteria. \((GD)^2\) can optimize any criterion that can be described by a smooth function. If the criterion cannot be captured by a smooth function, a non-smooth function for the criterion is combined with another smooth function, or auto-differentiation tools are used for the optimization. Our approach is flexible and can be used to optimize several criteria that have already been considered earlier (e.g., obtaining ideal edge lengths, stress, neighborhood preservation) as well as other criteria which have not yet been explicitly optimized in such fashion (e.g., vertex resolution, angular resolution, aspect ratio). We provide quantitative and qualitative evidence of the effectiveness of \((GD)^2\) with experimental data and a functional prototype: http://hdc.cs.arizona.edu/~mwli/graph-drawing/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 265–283 (2016)

    Google Scholar 

  2. Ábrego, B.M., Fernández-Merchant, S., Salazar, G.: The rectilinear crossing number of \(k_n\): closing in (or are we?). In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-0110-0_2

    Chapter  Google Scholar 

  3. Ahmed, R., De Luca, F., Devkota, S., Kobourov, S., Li, M.: Graph drawing via gradient descent, \((GD)^2\). arXiv preprint arXiv:2008.05584 (2020)

  4. Argyriou, E.N., Bekos, M.A., Symvonis, A.: Maximizing the total resolution of graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 62–67. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18469-7_6

    Chapter  MATH  Google Scholar 

  5. Bekos, M.A., et al.: A heuristic approach towards drawings of graphs with high crossing resolution. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 271–285. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04414-5_19

    Chapter  Google Scholar 

  6. Berman, M., Rannen Triki, A., Blaschko, M.B.: The Lovász-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4413–4421 (2018)

    Google Scholar 

  7. Bostock, M., Ogievetsky, V., Heer, J.: D3: data-driven documents. IEEE Trans. Vis. Comput. Graph. 17(12), 2301–2309 (2011)

    Article  Google Scholar 

  8. Buchheim, C., Chimani, M., Gutwenger, C., Jünger, M., Mutzel, P.: Crossings and planarization. In: Handbook of Graph Drawing and Visualization, pp. 43–85 (2013)

    Google Scholar 

  9. Chen, K.T., Dwyer, T., Marriott, K., Bach, B.: DoughNets: visualising networks using torus wrapping. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–11 (2020)

    Google Scholar 

  10. Chrobak, M., Goodrich, M.T., Tamassia, R.: Convex drawings of graphs in two and three dimensions. In: Proceedings of the 12th Annual Symposium on Computational Geometry, pp. 319–328 (1996)

    Google Scholar 

  11. Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. ACM Trans. Graph. (TOG) 15(4), 301–331 (1996)

    Article  Google Scholar 

  12. Demel, A., Dürrschnabel, D., Mchedlidze, T., Radermacher, M., Wulf, L.: A Greedy heuristic for crossing-angle maximization. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 286–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04414-5_20

    Chapter  Google Scholar 

  13. Brandenburg, F.J., Duncan, C.A., Gansner, E., Kobourov, S.G.: Graph-drawing contest report. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 512–516. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9_56

    Chapter  Google Scholar 

  14. Devkota, S., Ahmed, R., De Luca, F., Isaacs, K.E., Kobourov, S.: Stress-plus-X (SPX) graph layout. In: Archambault, D., Tóth, C.D. (eds.) GD 2019. LNCS, vol. 11904, pp. 291–304. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35802-0_23

    Chapter  MATH  Google Scholar 

  15. Didimo, W., Liotta, G.: The Crossing-angle Resolution in Graph Drawing. In: Pach, J. (ed.) Thirty essays on geometric graph theory. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-0110-0

    Chapter  Google Scholar 

  16. Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Balanced aspect ratio trees and their use for drawing very large graphs. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 111–124. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-37623-2_9

    Chapter  Google Scholar 

  17. Dwyer, T.: Scalable, versatile and simple constrained graph layout. Comput. Graph. Forum 28, 991–998 (2009)

    Article  Google Scholar 

  18. Dwyer, T., Koren, Y., Marriott, K.: IPSep-CoLa: an incremental procedure for separation constraint layout of graphs. IEEE Trans. Vis. Comput. Graph. 12, 821–8 (2006)

    Article  Google Scholar 

  19. Eades, P., Hong, S.-H., Klein, K., Nguyen, A.: Shape-based quality metrics for large graph visualization. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 502–514. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27261-0_41

    Chapter  MATH  Google Scholar 

  20. Eades, P., Huang, W., Hong, S.H.: A force-directed method for large crossing angle graph drawing. arXiv preprint arXiv:1012.4559 (2010)

  21. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz— open source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4_57

    Chapter  MATH  Google Scholar 

  22. Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9_25

    Chapter  MATH  Google Scholar 

  23. Griewank, A., Walther, A.: Evaluating derivatives: principles and techniques of algorithmic differentiation, vol. 105. SIAM (2008)

    Google Scholar 

  24. Huang, W., Eades, P., Hong, S.H.: Larger crossing angles make graphs easier to read. J. Vis. Lang. Comput. 25(4), 452–465 (2014)

    Article  Google Scholar 

  25. Huang, W., Eades, P., Hong, S.H., Lin, C.C.: Improving multiple aesthetics produces better graph drawings. J. Vis. Lang. Comput. 24(4), 262–272 (2013)

    Article  Google Scholar 

  26. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989)

    Article  MathSciNet  Google Scholar 

  27. Kruiger, J.F., Rauber, P.E., Martins, R.M., Kerren, A., Kobourov, S., Telea, A.C.: Graph layouts by t-SNE. Comput. Graph. Forum 36(3), 283–294 (2017)

    Article  Google Scholar 

  28. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1), 1–27 (1964)

    Article  MathSciNet  Google Scholar 

  29. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)

    Google Scholar 

  30. Purchase, H.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63938-1_67

    Chapter  Google Scholar 

  31. Radermacher, M., Reichard, K., Rutter, I., Wagner, D.: A geometric heuristic for rectilinear crossing minimization. In: The 20th Workshop on Algorithm Engineering and Experiments, pp. 129–138 (2018)

    Google Scholar 

  32. Schulz, A.: Drawing 3-polytopes with good vertex resolution. J. Graph Algorithms Appl. 15(1), 33–52 (2011)

    Article  MathSciNet  Google Scholar 

  33. Shabbeer, A., Ozcaglar, C., Gonzalez, M., Bennett, K.P.: Optimal embedding of heterogeneous graph data with edge crossing constraints. In: NIPS Workshop on Challenges of Data Visualization (2010)

    Google Scholar 

  34. Shepard, R.N.: The analysis of proximities: multidimensional scaling with an unknown distance function. Psychometrika 27(2), 125–140 (1962)

    Article  MathSciNet  Google Scholar 

  35. Smilkov, D., et al.: Tensorflow.js: machine learning for the web and beyond. In: Proceedings of Machine Learning and Systems 2019, pp. 309–321 (2019)

    Google Scholar 

  36. Wang, Y., et al.: Revisiting stress majorization as a unified framework for interactive constrained graph visualization. IEEE Trans. Vis. Comput. Graph. 24(1), 489–499 (2017)

    Article  Google Scholar 

  37. Ware, C., Purchase, H., Colpoys, L., McGill, M.: Cognitive measurements of graph aesthetics. Inf. Vis. 1(2), 103–110 (2002)

    Article  Google Scholar 

  38. Zheng, J.X., Pawar, S., Goodman, D.F.: Graph drawing by stochastic gradient descent. IEEE Trans. Vis. Comput. Graph. 25(9), 2738–2748 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF grants CCF-1740858, CCF-1712119, and DMS-1839274.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyan Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, R., De Luca, F., Devkota, S., Kobourov, S., Li, M. (2020). Graph Drawing via Gradient Descent, \((GD)^2\). In: Auber, D., Valtr, P. (eds) Graph Drawing and Network Visualization. GD 2020. Lecture Notes in Computer Science(), vol 12590. Springer, Cham. https://doi.org/10.1007/978-3-030-68766-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68766-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68765-6

  • Online ISBN: 978-3-030-68766-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics