Skip to main content

AI Slipping on Tiles: Data Leakage in Digital Pathology

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12661))

Included in the following conference series:

Abstract

Reproducibility of AI models on biomedical data still stays as a major concern for their acceptance into the clinical practice. Initiatives for reproducibility in the development of predictive biomarkers as the MAQC Consortium already underlined the importance of appropriate Data Analysis Plans (DAPs) to control for different types of bias, including data leakage from the training to the test set. In the context of digital pathology, the leakage typically lurks in weakly designed experiments not accounting for the subjects in their data partitioning schemes. This issue is then exacerbated when fractions or subregions of slides (i.e. “tiles”) are considered. Despite this aspect is largely recognized by the community, we argue that it is often overlooked. In this study, we assess the impact of data leakage on the performance of machine learning models trained and validated on multiple histology data collection. We prove that, even with a properly designed DAP (\(10 \times 5 \) repeated cross-validation), predictive scores can be inflated up to \(41\%\) when tiles from the same subject are used both in training and validation sets by deep learning models. We replicate the experiments for 4 classification tasks on 3 histopathological datasets, for a total of 374 subjects, 556 slides and more than 27, 000 tiles. Also, we discuss the effects of data leakage on transfer learning strategies with models pre-trained on general-purpose datasets or off-task digital pathology collections. Finally, we propose a solution that automates the creation of leakage-free deep learning pipelines for digital pathology based on histolab, a novel Python package for histology data preprocessing. We validate the solution on two public datasets (TCGA and GTEx).

N. Bussola and A. Marcolini—Joint first author.

G. Jurman and C. Furlanello—Joint last author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://gtexportal.org/home/releaseInfoPage.

  2. 2.

    http://idr.openmicroscopy.org/.

  3. 3.

    DenseNet-201: \(\sim \)12M parameters; ResNet-152: \(\sim \)6M parameters.

References

  1. Ioannidis, J.P.A., et al.: Repeatability of published microarray gene expression analyses. Nat. Genet. 41(2), 149 (2009)

    Article  Google Scholar 

  2. Iqbal, S.A., et al.: Reproducible research practices and transparency across the biomedical literature. PLoS Biol. 14(1), e1002333 (2016)

    Article  Google Scholar 

  3. National Academies of Sciences, Engineering, and Medicine, Policy and Global Affairs. Reproducibility and Replicability in Science. National Academies Press (2019)

    Google Scholar 

  4. Leek, J.T., et al.: Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 11(10), 733 (2010)

    Article  Google Scholar 

  5. Moossavi, S., et al.: Repeatability and reproducibility assessment in a large-scale population-based microbiota study: case study on human milk microbiota. bioRxiv:2020.04.20.052035 (2020)

    Google Scholar 

  6. Turner, B.O., et al.: Small sample sizes reduce the replicability of task-based fMRI studies. Commun. Biol. 1(1), 1–10 (2018)

    Article  Google Scholar 

  7. Barla, A., et al.: Machine learning methods for predictive proteomics. Briefings Bioinform. 9(2), 119–128 (2008)

    Article  Google Scholar 

  8. Peixoto, L., et al.: How data analysis affects power, reproducibility and biological insight of RNA-seq studies in complex datasets. Nucleic Acids Res. 43(16), 7664–7674 (2015)

    Article  Google Scholar 

  9. The MAQC Consortium: The MAQC-II project: a comprehensive study of common practices for the development and validation of microarray-based predictive models. Nat. Biotechnol. 28(8), 827–838 (2010)

    Article  Google Scholar 

  10. Ching, T., et al.: Opportunities and obstacles for deep learning in biology and medicine. J. Roy. Soc. Interface 15(141), 20170387 (2018)

    Article  Google Scholar 

  11. Saravanan, N., et al.: Data wrangling and data leakage in machine learning for healthcare. Int. J. Emerg. Technol. Innov. Res. 5(8), 553–557 (2018)

    Google Scholar 

  12. Spanhol, F.A., et al.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462 (2016)

    Article  Google Scholar 

  13. Shahidi, F., et al.: Breast cancer classification using deep learning approaches and histopathology image: a comparison study. IEEE Access 8, 187531–187552 (2020)

    Article  Google Scholar 

  14. Cohen, S.: Artificial Intelligence and Deep Learning in Pathology. Elsevier, Amsterdam (2020)

    Google Scholar 

  15. Komura, D., et al.: Machine learning methods for histopathological image analysis. Comput. Struct. Biotechnol. J. 16, 34–42 (2018)

    Article  Google Scholar 

  16. Mormont, R., et al.: Comparison of deep transfer learning strategies for digital pathology. In: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2343–234309. IEEE (2018)

    Google Scholar 

  17. Marée, R.: The need for careful data collection for pattern recognition in digital pathology. J. Pathol. Inform. 8(1), 19 (2017)

    Article  Google Scholar 

  18. Bizzego, A., et al.: Evaluating reproducibility of AI algorithms in digital pathology with DAPPER. PLOS Comput. Biol. 15(3), 1–24 (2019)

    Article  Google Scholar 

  19. Huang, G., et al.: Densely connected convolutional networks. In: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269. IEEE (2018)

    Google Scholar 

  20. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE (2016)

    Google Scholar 

  21. Barisoni, L., et al.: Digital pathology and computational image analysis in nephropathology. Nat. Rev. Nephrol. 16, 669–685 (2020)

    Article  Google Scholar 

  22. The GTEx Consortium: The genotype-tissue expression (GTEx) project. Nat. Genet. 45(6), 580–585 (2013)

    Article  Google Scholar 

  23. Tomczak, K., et al.: The cancer genome atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. 19(1A), A68 (2015)

    Google Scholar 

  24. Nirschl, J.J., et al.: A deep-learning classifier identifies patients with clinical heart failure using whole-slide images of H&E tissue. PLOS ONE 13(4), e0192726 (2018)

    Article  Google Scholar 

  25. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  26. Raschka, S.: Model evaluation, model selection, and algorithm selection in machine learning. arXiv:1811.12808v3 (2020)

  27. Kingma, D.P., et al.: Adam: a method for stochastic optimization. In: Published as a conference paper at ICLR 2015. arXiv:1412.6980 (2014)

  28. Jurman, G., et al.: A comparison of MCC and CEN error measures in multi-class prediction. PLOS ONE 7(8), 1–8 (2012)

    Google Scholar 

  29. Alom, M.Z., Yakopcic, C., Nasrin, M.S., Taha, T.M., Asari, V.K.: Breast cancer classification from histopathological images with inception recurrent residual convolutional neural network. J. Digital Imaging 32(4), 605–617 (2019). https://doi.org/10.1007/s10278-019-00182-7

    Article  Google Scholar 

  30. Jiang, Y., et al.: Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module. PLOS ONE 14(3), e0214587 (2019)

    Article  Google Scholar 

  31. Jannesari, M., et al.: Breast cancer histopathological image classification: a deep learning approach. In: Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2405–2412 (2018)

    Google Scholar 

  32. Xie, J., et al.: Deep learning based analysis of histopathological images of breast cancer. Front. Genet. 10, 80 (2019)

    Article  Google Scholar 

  33. Nawaz, M., et al.: Multi-class breast cancer classification using deep learning convolutional neural network. Int. J. Adv. Comput. Sci. Appl. 9(6), 316–332 (2018)

    Google Scholar 

  34. Han, Z., et al.: Breast cancer multi-classification from histopathological images with structured deep learning model. Sci. Rep. 7(1), 4172 (2017)

    Article  Google Scholar 

  35. Alom, M.J., et al.: Advanced deep convolutional neural network approaches for digital pathology image analysis: a comprehensive evaluation with different use cases. arXiv:1904.09075 (2019)

  36. Nguyen, P.T., et al.: Multiclass breast cancer classification using convolutional neural network. In: Proceedings of the 2019 International Symposium on Electrical and Electronics Engineering (ISEE), pp. 130–134. IEEE (2019)

    Google Scholar 

  37. Deniz, E., Şengür, A., Kadiroğlu, Z., Guo, Y., Bajaj, V., Budak, Ü.: Transfer learning based histopathologic image classification for breast cancer detection. Health Inf. Sci. Syst. 6(1), 1–7 (2018). https://doi.org/10.1007/s13755-018-0057-x

    Article  Google Scholar 

  38. Myung, J.L., et al.: Deep convolution neural networks for medical image analysis. Int. J. Eng. Technol. 7(3), 115–119 (2018)

    MathSciNet  Google Scholar 

  39. Pan, X., et al.: Multi-task deep learning for fine-grained classification/grading in breast cancer histopathological images. In: Lu, H. (ed.) ISAIR 2018. SCI, vol. 810, pp. 85–95. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-04946-1_10

    Chapter  Google Scholar 

  40. Shallu, R.M.: Breast cancer histology images classification: training from scratch or transfer learning? ICT Exp. 4(4), 247–254 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Bussola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bussola, N., Marcolini, A., Maggio, V., Jurman, G., Furlanello, C. (2021). AI Slipping on Tiles: Data Leakage in Digital Pathology. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12661. Springer, Cham. https://doi.org/10.1007/978-3-030-68763-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68763-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68762-5

  • Online ISBN: 978-3-030-68763-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics