Skip to main content

The Role of Solid Mechanics in Stabilising Structured Flows

  • Chapter
  • First Online:
Dynamically Structured Flow in Pulsed Fluidised Beds

Part of the book series: Springer Theses ((Springer Theses))

  • 144 Accesses

Abstract

This chapter provides a detailed description of the self-organisation of bubbles into triangular lattices in quasi-2D beds of glass beads fluidised under oscillatory flows of varying frequency. The flow pattern is quantified experimentally by studying the time evolution of the size, velocity and separation of bubbles. A comparative numerical study using discrete and continuum models reveals the stabilising effect induced by interparticle friction. When the bed contracts, the bottom layer of granules forms temporally locked regions that synchronise with the nucleation of bubbles and stabilise flow structures. Due to the frictionless nature, classic continuum models underpredict the energy dissipation and create a long-range, macroscopic recirculation of particles, leading to a fundamentally different fluidisation state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhavan A, van Ommen JR, Nijenhuis J, Wang XS, Coppens M-O, Rhodes MJ (2008) Improved drying in a pulsation-assisted fluidized bed. Ind Eng Chem Res 48(1):302–309

    Article  CAS  Google Scholar 

  2. Aoki KM, Akiyama T (1996) Spontaneous wave pattern formation in vibrated granular materials. Phys Rev Lett 77(20):4166

    Article  CAS  Google Scholar 

  3. Bakshi A, Altantzis C, Bershanska A, Stark AK, Ghoniem AF (2018) On the limitations of 2D CFD for thin-rectangular fluidized bed simulations. Powder Technol 332:114–119

    Article  CAS  Google Scholar 

  4. Boemer A, Qi H, Renz U (1997) Eulerian simulation of bubble formation at a jet in a two-dimensional fluidized bed. Int J Multiphase Flow 23(5):927–944

    Article  CAS  Google Scholar 

  5. Bougie J, Duckert K (2011) Continuum simulations of shocks and patterns in vertically oscillated granular layers. Phys Rev E 83(1):011303

    Article  CAS  Google Scholar 

  6. Bougie J, Kreft J, Swift JB, Swinney HL (2005) Onset of patterns in an oscillated granular layer: continuum and molecular dynamics simulations. Phys Rev E 71(2):021301

    Article  CAS  Google Scholar 

  7. Chialvo S, Sun J, Sundaresan S (2012) Bridging the rheology of granular flows in three regimes. Phys Rev E 85(2):021305

    Article  CAS  Google Scholar 

  8. Chialvo S, Sundaresan S (2013) A modified kinetic theory for frictional granular flows in dense and dilute regimes. Phys Fluids 25(7):070603

    Google Scholar 

  9. Coppens M-O, Regelink MA, van den Bleek CM (2002) Pulsation induced transition from chaos to periodically ordered patterns in fluidised beds. In: Proceedings of 4th World Congress on Particle Technology (WCPT), Sydney, pp 1–8

    Google Scholar 

  10. Coppens M-O, van Ommen JR (2003) Structuring chaotic fluidized beds. Chem Eng J 96(1):117–124

    Google Scholar 

  11. Deen NG, van Sint Annaland M, van der Hoef M, Kuipers JAM (2007) Review of discrete particle modeling of fluidized beds. Chem Eng Sci 62(1–2):28–44

    Google Scholar 

  12. Gidaspow D (1994) Multiphase flow and fluidization: continuum and kinetic theory descriptions. Academic Press, New York

    Google Scholar 

  13. Goldman DI, Swift JB, Swinney HL (2004) Noise, coherent fluctuations, and the onset of order in an oscillated granular fluid. Phys Rev Lett 92(17):174302

    Article  CAS  Google Scholar 

  14. Hernández-Jiménez F, Sánchez-Delgado S, Gómez-García A, Acosta-Iborra A (2011) Comparison between two-fluid model simulations and particle image analysis & velocimetry (PIV) results for a two-dimensional gas–solid fluidized bed. Chem Eng Sci 66(17):3753–3772

    Google Scholar 

  15. Jackson R (2000) The dynamics of fluidized particles. Cambridge University Press, Cambridge

    Google Scholar 

  16. Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441(7094):727–730

    Google Scholar 

  17. Kawaguchi T, Miyoshi A, Tanaka T, Tsuji Y (2001) Discrete particle analysis of 2D pulsating fluidized bed. In: Proceedings of 4th International Conference on Multiphase Flow, New Orleans, #838

    Google Scholar 

  18. Lu L, Xu J, Ge W, Yue Y, Liu X, Li J (2014) EMMS-based discrete particle method (EMMS–DPM) for simulation of gas–solid flows. Chem Eng Sci 120:67–87

    Article  CAS  Google Scholar 

  19. Luding S, Clément E, Rajchenbach J, Duran J (1996) Simulations of pattern formation in vibrated granular media. Europhys Lett 36(4):247

    Google Scholar 

  20. Pannala S, Syamlal M, O’Brien TJ (eds) (2011) Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice. IGI Global, Hershey

    Google Scholar 

  21. Passalacqua A, Marmo L (2009) A critical comparison of frictional stress models applied to the simulation of bubbling fluidized beds. Chem Eng Sci 64(12):2795–2806

    Article  CAS  Google Scholar 

  22. Regelink MA (2000) Formation of regular bubble patterns in periodically pulsed gas-solid fluidized beds. MSc thesis, Delft University of Technology, Delft, The Netherlands

    Google Scholar 

  23. Snider D (2001) An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows. J Comput Phys 170(2):523–549

    Article  CAS  Google Scholar 

  24. Song C, Wang P, Makse HA (2008) A phase diagram for jammed matter. Nature 453(7195):629

    Article  CAS  Google Scholar 

  25. Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation of two-dimensional fluidized bed. Powder Technol 77(1):79–87

    Article  CAS  Google Scholar 

  26. van der Hoef M, van Sint Annaland M, Deen NG, Kuipers JAM (2008) Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Annu Rev Fluid Mech 40:47–70

    Google Scholar 

  27. Wang X, Rhodes M (2005) Pulsed fluidization—a DEM study of a fascinating phenomenon. Powder Technol 159(3):142–149

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiqiao Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, K. (2021). The Role of Solid Mechanics in Stabilising Structured Flows. In: Dynamically Structured Flow in Pulsed Fluidised Beds. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-68752-6_5

Download citation

Publish with us

Policies and ethics