Skip to main content

Detection of Malicious Android Applications: Classical Machine Learning vs. Deep Neural Network Integrated with Clustering

  • Conference paper
  • First Online:
Broadband Communications, Networks, and Systems (BROADNETS 2020)

Abstract

Today anti-malware community is facing challenges due to ever-increasing sophistication and volume of malware attacks developed by adversaries. Traditional malware detection mechanisms are not able to cope-up against next-generation malware attacks. Therefore in this paper, we propose effective and efficient Android malware detection models based on machine learning and deep learning integrated with clustering. We performed a comprehensive study of different feature reduction, classification and clustering algorithms over various performance metrics to construct the Android malware detection models. Our experimental results show that malware detection models developed using Random Forest eclipsed deep neural network and other classifiers on the majority of performance metrics. The baseline Random Forest model without any feature reduction achieved the highest AUC of \(99.4\%\). Also, the segregating of vector space using clustering integrated with Random Forest further boosted the AUC to \(99.6\%\) in one cluster and direct detection of Android malware in another cluster, thus reducing the curse of dimensionality. Additionally, we found that feature reduction in detection models does improve the model efficiency (training and testing time) many folds without much penalty on effectiveness of detection model .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/ANDROIDOS_DROIDSMS.A.

  2. 2.

    https://usa.kaspersky.com/resource-center/threats/zeus-virus.

  3. 3.

    https://www.avast.com/c-zero-day.

  4. 4.

    https://developer.android.com/guide/platform.

  5. 5.

    https://play.google.com/store?hl=en.

  6. 6.

    https://www.virustotal.com/.

  7. 7.

    https://developer.android.com/guide/platform.

  8. 8.

    https://ibotpeaches.github.io/Apktool/.

  9. 9.

    https://developer.android.com/reference/dalvik/bytecode/Opcodes.

References

  1. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: Drebin: effective and explainable detection of android malware in your pocket. In: Network and Distributed System Security (NDSS) Symposium, vol. 14, pp. 23–26 (2014)

    Google Scholar 

  2. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 18(2), 1153–1176 (2015)

    Article  Google Scholar 

  3. Chau, M., Reith, R., (IDC-Corporate): Smartphone Market Share (2018). https://www.idc.com/promo/smartphone-market-share/os. Accessed May 2020

  4. Clooke, R. :(GDATA) Cyber attacks on Android devices on the rise (2018). https://www.idc.com/promo/smartphone-market-share/os. Accessed May 2020

  5. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic malware-analysis techniques and tools. ACM Comput. Surv. (CSUR) 44(2), 1–42 (2008)

    Article  Google Scholar 

  6. Ganesh, M., Pednekar, P., Prabhuswamy, P., Nair, D.S., Park, Y., Jeon, H.: CNN-based android malware detection. In: International Conference on Software Security and Assurance (ICSSA), pp. 60–65. IEEE (2017)

    Google Scholar 

  7. Griffin, K., Schneider, S., Hu, X., Chiueh, T.: Automatic generation of string signatures for malware detection. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 101–120. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04342-0_6

    Chapter  Google Scholar 

  8. Henchiri, O., Japkowicz, N.: A feature selection and evaluation scheme for computer virus detection. In: 6th International Conference on Data Mining (ICDM’06), pp. 891–895. IEEE (2006)

    Google Scholar 

  9. Hou, S., Saas, A., Ye, Y., Chen, L.: DroidDelver: an android malware detection system using deep belief network based on API call blocks. In: Song, S., Tong, Y. (eds.) WAIM 2016. LNCS, vol. 9998, pp. 54–66. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47121-1_5

    Chapter  Google Scholar 

  10. Kemp, S.:(WeAreSocial) Global Digital Report (2018). https://digitalreport.wearesocial.com/. Accessed May 2020

  11. Li, W., Wang, Z., Cai, J., Cheng, S.: An android malware detection approach using weight-adjusted deep learning. In: International Conference on Computing, Networking and Communications (ICNC), pp. 437–441. IEEE (2018)

    Google Scholar 

  12. Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., Van Der Veen, V., Platzer, C.: Andrubis-1,000,000 apps later: a view on current android malware behaviors. In: 3rd International Workshop on Building Analysis Datasets and Gathering Experience Returns for Security (BADGERS), pp. 3–17. IEEE (2014)

    Google Scholar 

  13. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 8, 1226–1238 (2005)

    Article  Google Scholar 

  14. Rastogi, V., Chen, Y., Jiang, X.: Droidchameleon: evaluating android anti-malware against transformation attacks. In: 8th ACM SIGSAC Symposium on Information, Computer and Communications Security (ASIA CCS), pp. 329–334. ACM (2013)

    Google Scholar 

  15. Sarma, B.P., Li, N., Gates, C., Potharaju, R., Nita-Rotaru, C., Molloy, I.: Android permissions: a perspective combining risks and benefits. In: 17th ACM Symposium on Access Control Models and Technologies (SACMAT), pp. 13–22. ACM (2012)

    Google Scholar 

  16. Sewak, M., Sahay, S.K., Rathore, H.: An investigation of a deep learning based malware detection system. In: 13th International Conference on Availability, Reliability and Security (ARES), pp. 1–5 (2018)

    Google Scholar 

  17. Sewak, M., Sahay, S.K., Rathore, H.: DOOM: a novel adversarial-DRL-based op-code level metamorphic malware obfuscator for the enhancement of ids. In: Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers, pp. 131–134 (2020)

    Google Scholar 

  18. Sewak, M., Sahay, S.K., Rathore, H.: An overview of deep learning architecture of deep neural networks and autoencoders. J. Comput. Theor. Nanosci. 17(1), 182–188 (2020)

    Article  Google Scholar 

  19. Sharma, A., Sahay, S.K.: An investigation of the classifiers to detect android malicious apps. In: Mishra, D., Azar, A., Joshi, A. (eds.) Information and Communication Technology. AISC, vol. 625, pp. 207–217. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5508-9_20

    Chapter  Google Scholar 

  20. Sun, L., Li, Z., Yan, Q., Srisa-an, W., Pan, Y.: SIGPID: significant permission identification for android malware detection. In: 11th International Conference on Malicious and Unwanted Software (MALWARE), pp. 1–8. IEEE (2016)

    Google Scholar 

  21. Symantec: Internet Security Threat Report (ISTR), Volume 24, February 2019. https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf. Accessed May 2020

  22. Turner, A.:(BankMyCell) How many smartphones are in the world? (2020). https://www.bankmycell.com/blog/how-many-phones-are-in-the-world. Accessed May 2020

  23. Wang, Z., Cai, J., Cheng, S., Li, W.: Droiddeeplearner: identifying android malware using deep learning. In: IEEE 37th Sarnoff Symposium, pp. 160–165. IEEE (2016)

    Google Scholar 

  24. Wu, D.J., Mao, C.H., Wei, T.E., Lee, H.M., Wu, K.P.: Droidmat: android malware detection through manifest and API calls tracing. In: Asia Joint Conference on Information Security (AsiaJCIS), pp. 62–69. IEEE (2012)

    Google Scholar 

  25. Xu, M., et al.: Toward engineering a secure android ecosystem: a survey of existing techniques. ACM Comput. Surv. (CSUR) 49(2), 1–47 (2016)

    Article  Google Scholar 

  26. Yan, P., Yan, Z.: A survey on dynamic mobile malware detection. Softw. Q. J. 26(3), 891–919 (2018)

    Article  Google Scholar 

  27. Yang, W., Xiao, X., Andow, B., Li, S., Xie, T., Enck, W.: Appcontext: differentiating malicious and benign mobile app behaviors using context. In: 37th International Conference on Software Engineering (ICSE), pp. 303–313. IEEE (2015)

    Google Scholar 

  28. Ye, Y., Li, T., Adjeroh, D., Iyengar, S.S.: A survey on malware detection using data mining techniques. ACM Comput. Surv. (CSUR) 50(3), 41 (2017)

    Article  Google Scholar 

  29. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution. In: IEEE Symposium on Security and Privacy (IEEE S&P), pp. 95–109. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant Rathore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rathore, H., Sahay, S.K., Thukral, S., Sewak, M. (2021). Detection of Malicious Android Applications: Classical Machine Learning vs. Deep Neural Network Integrated with Clustering. In: Gao, H., J. Durán Barroso, R., Shanchen, P., Li, R. (eds) Broadband Communications, Networks, and Systems. BROADNETS 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 355. Springer, Cham. https://doi.org/10.1007/978-3-030-68737-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68737-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68736-6

  • Online ISBN: 978-3-030-68737-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics