Skip to main content

Energy Efficiency Optimization for RF Energy Harvesting Relay System

  • Conference paper
  • First Online:
Broadband Communications, Networks, and Systems (BROADNETS 2020)

Abstract

This paper conducts research on the RF energy harvesting relay network, and proposes an improved energy harvesting relay protocol, which allows the energy harvesting source node to retransmit data to improve the system diversity gain, and constructs energy harvesting slot allocation, subcarrier pairing, and power Optimized model of distributed system energy efficiency. A resource allocation algorithm based on optimal energy efficiency is further proposed. The Dinkelbach method is used to transform the nonlinear programming problem into a linear programming problem. Then, the Hungarian algorithm and the sub-gradient method are used to obtain the iterative algorithm based on energy efficiency optimization. Simulation shows that the algorithm reduces the complexity of the algorithm and has good global convergence.

This research has been supported by the National Natural Science Foundation of China (No. 61802155), the High-level Introduction of Talent Scientific Research Start-up Fund of Jiangsu Police Institute (JSPI19GKZL407) and the General Research Project of Anhui Higher Education Promotion Plan (Grant TSKJ2015B18, KZ00215021, KZ00215022), Innovation project for postgraduates of Jiangsu province (KYCX19-0887), Youth Foundation of Anhui Polytechnic University (2014YQ40).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu, X., Wang, P., Niyato, D., et al.: Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun. Surv. Tutor. 17(2), 757–789 (2014)

    Article  Google Scholar 

  2. Hao, Z.: Development of Low Power RF Energy Acquisition System. Nanjing University of Posts and Telecommunications (2015)

    Google Scholar 

  3. Lee, S., Zhang, R., Huang, K.: Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Trans. Wirel. Commun. 12(9), 4788–4799 (2013)

    Article  Google Scholar 

  4. Sakr, A.H., Hossain, E.: Cognitive and energy harvesting-based D2D communication in cellular networks: stochastic geometry modeling and analysis. IEEE Trans. Commun. 63(5), 1867–1880 (2015)

    Article  Google Scholar 

  5. Luo, Y., Pu, L., Zhao, Y., Wang, W., Yang, Q.: A nonlinear recursive model based optimal transmission scheduling in RF energy harvesting wireless communications. IEEE Trans. Wirel. Commun. (2020). https://doi.org/10.1109/TWC.2020.2973967

    Article  Google Scholar 

  6. Xie, Z.-W., Zhu, Q.: Power allocation algorithm for cognitive radio energy harvesting networks based on energy cooperation. J. Commun. 38(9), 176–184 (2017)

    Google Scholar 

  7. Long, Y., Zhang, X., Fang, X., He, R.: Resource allocation in cognitive radio network with energy harvesting. J. Commun. 39(9), 67–75 (2018)

    Google Scholar 

  8. Tutuncuoglu, K., Varan, B., Yener, A.: Throughput maximization for two-way relay channels with energy harvesting nodes: the impact of relaying strategies[J]. IEEE Trans. Commu. 63(6), 2081–2093 (2015)

    Article  Google Scholar 

  9. Chen, Z., Dong, Y., Fan, P., et al.: Optimal throughput for two-way relaying: energy harvesting and energy co-operation. IEEE J. Sel. Areas Commun. 34(5), 1448–1462 (2016)

    Article  Google Scholar 

  10. Gu, Y., Aissa, S.: RF-based energy harvesting in decode-and-forward relaying systems: ergodic and outage capacities. IEEE Trans. Wirel. Commun. 14(11), 6425–6434 (2015)

    Article  Google Scholar 

  11. Qian, L.P., Feng, G., Leung, V.C.M.: Optimal transmission policies for relay communication networks with ambient energy harvesting relays. IEEE J. Sel. Areas Commun. 34(12), 3754–3768 (2016)

    Article  Google Scholar 

  12. Ju, M.C., Yang, H.C.: Optimum design of energy harvesting relay for two-way decode-and-forward relay networks under max? Min and max-sum criterions. IEEE Trans. Commun. 67(10), 6682–6697 (2019)

    Article  Google Scholar 

  13. Yi, L., Ronghua, S., Jian, D., et al.: Outage performance analysis of two-way underlay cognitive relay network with energy harvesting. J. Nanjing Univ. Sci. Technol. 43(03), 292–299 (2019)

    Google Scholar 

  14. Xu, J., Zeng, F., Li, K., Li, Y.: Performance analysis of two-way relay cooperation underlay cognitive radio networks based on WIPT. J. Commun. 40(2), 129–136 (2019)

    Google Scholar 

  15. Chen, Y., Shi, R., Feng, W., et al.: AF relaying with energy harvesting source and relay. IEEE Trans. Veh. Technol. 66(1), 874–879 (2016)

    Google Scholar 

  16. Boyd, S., Mattingley, J.: Branch and bound methods. Stanford University, Stanford (2003)

    Google Scholar 

  17. Chen, Y., Fang, X.M., Zhao, Y.: Energy-efficient adaptive power allocation in orthogonal frequency division multiplexing-based amplify-and-forward relay link. IET Commun. 7(15), 1676–1687 (2013)

    Article  Google Scholar 

  18. Wang, Y., Zhang, J., Zhang, P.: Low-complexity energy-efficient power and subcarrier allocation in cooperative networks. IEEE Commun. Lett. 17(10), 1944–1977 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfang Xin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, G., Xin, J., Wang, Q., Xia, L., Li, M. (2021). Energy Efficiency Optimization for RF Energy Harvesting Relay System. In: Gao, H., J. Durán Barroso, R., Shanchen, P., Li, R. (eds) Broadband Communications, Networks, and Systems. BROADNETS 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 355. Springer, Cham. https://doi.org/10.1007/978-3-030-68737-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68737-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68736-6

  • Online ISBN: 978-3-030-68737-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics