Skip to main content

Constructing a Green MPTCP Framework for Industrial Internet of Things Applications

  • Conference paper
  • First Online:
Broadband Communications, Networks, and Systems (BROADNETS 2020)

Abstract

In the typical distributed applications, the data exchange between the communicating peers proceeds along the transport path established in the connection initialization phase, even if a better one is discovered during the active session. With the recent advancement in the multipath protocol development, e.g., MPTCP, the peers can benefit from a concurrent use of a few channels, thus improving the transmission quality. However, the present approaches to the multipath transfer organization tend to neglect the energy aspects, crucial for resource-constrained Internet of Things (IoT) devices. In this paper, a framework for MPTCP module tuning, targeting the power expenditure, is developed. A new Scheduler and a new Path Manager promoting a conservative energy economy are designed by adopting a formal optimization approach. Moreover, explicit guidelines regarding the TCP variant selection are provided. As confirmed by numerous experiments involving physical devices and real networks, the proposed configuration scheme allows for several percent energy gain with respect to the default one, thus setting a solid framework for green MPTCP-based Industrial IoT communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koutsiamanis, R.-A., Papadopoulos, G.Z., Fafoutis, X., Del Fiore, J.M., Thubert, P., Montavont, N.: From best effort to deterministic packet delivery for wireless Industrial IoT networks. IEEE Trans. Ind. Inf. 14(10), 4468–4480 ( 2018)

    Article  Google Scholar 

  2. Xu, L., He, W., Li, S.: Internet of Things in industries: a survey. IEEE Trans. Ind. Inf. 10(4), 2233–2243 ( 2014)

    Article  Google Scholar 

  3. Willig, A.: Recent and emerging topics in wireless industrial communications: a selection. IEEE Trans. Ind. Inf. 4(2), 102–124 ( 2008)

    Article  Google Scholar 

  4. Barré, S., Paasch, C., Bonaventure, O.: MultiPath TCP: from theory to practice. Technical report, Université Catholique de Louvain (2011)

    Google Scholar 

  5. Ford, A., Raiciu, C., Handley, M., Bonaventure, O., Paasch, C.: TCP extensions for multipath operation with multiple addresses. RFC 8684 (2020)

    Google Scholar 

  6. Barré, S., Paasch, C.: MultiPath TCP – Linux kernel implementation. https://www.multipath-tcp.org

  7. Paasch, C., Ferlin, S., Alay, O., Bonaventure, O.: Experimental evaluation of multipath TCP schedulers. In: Proceedings of the ACM SIGCOMM CSWS, Chicago, USA, pp. 27–32 (2014)

    Google Scholar 

  8. Ferlin, S., Alay, Ö., Mehani, O., Boreli, R.: BLEST: blocking estimation-based MPTCP scheduler for heterogeneous networks. In: Proceedings of the IFIP Networking Conference Workshops, Vienna, Austria, pp. 431–439 (2016)

    Google Scholar 

  9. Frommgen, A., Erbshäußer, T., Buchmann, A., Zimmermann, T., Wehrle, K.: ReMP TCP: low latency multipath TCP. In: 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, pp. 1–7 (2016)

    Google Scholar 

  10. Ferlin, S., Kucera, S., Claussen, H., Alay, Ö.: MPTCP meets FEC: supporting latency-sensitive applications over heterogeneous networks. IEEE/ACM Trans. Netw. 26(5), 2005–2018 ( 2018)

    Article  Google Scholar 

  11. Afanasyev, A., Tilley, N., Reiher, P., Kleinrock, L.: Host-to-host congestion control for TCP. IEEE Commun. Surv. Tutor. 12(3), 304–342 (2010). 3Q

    Article  Google Scholar 

  12. Mascolo, S., Casetti, C., Gerla, M., Sanadid, M.Y., Wang, R.: TCP westwood: bandwidth estimation for enhanced transport over wireless links. In: Proceedings of the ACM Mobicom, Rome, Italy (2001)

    Google Scholar 

  13. Cardwell, N., Cheng, Y., Gunn, C.S., Yeganeh, S.H., Jacobson, V.: BBR: congestion-based congestion control. ACM Queue 14(5), 20–53 (2016)

    Article  Google Scholar 

  14. Xu, C., Zhao, J., Muntean, G.: Congestion control design for multipath transport protocols: a survey. IEEE Commun. Surv. Tutor. 18(4), 2948–2969 (2016)

    Article  Google Scholar 

  15. Ignaciuk, P., Morawski, M.: Discrete-time sliding-mode controllers for MPTCP networks. IEEE Trans. Syst. Man Cybern. Syst. 50(2) (2020, in press)

    Google Scholar 

  16. Deng, S., Netravali, R., Sivaraman, A., Balakrishnan, H.: WiFi, LTE, or both? Measuring multi-homed wireless internet performance. In: Proceedings of the ACM IMC, Vancouver, Canada, pp. 181–194 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Morawski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morawski, M., Ignaciuk, P. (2021). Constructing a Green MPTCP Framework for Industrial Internet of Things Applications. In: Gao, H., J. Durán Barroso, R., Shanchen, P., Li, R. (eds) Broadband Communications, Networks, and Systems. BROADNETS 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 355. Springer, Cham. https://doi.org/10.1007/978-3-030-68737-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68737-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68736-6

  • Online ISBN: 978-3-030-68737-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics