Skip to main content

Computational Methods for Health Informatics

  • Chapter
  • First Online:
Computational Intelligence in Healthcare

Part of the book series: Health Information Science ((HIS))

  • 600 Accesses

Abstract

Huge volumes of biological and healthcare data have been generated and accumulated together rapidly with high scale. The exponential growth and easy availability of these data have offered a movement in research activity of healthcare data science. The traditional methods are incapable of processing and management of enormous quantity of complex with high-dimensional healthcare data in terms of volume and variety. Recently data science technologies have been increasingly used in the research of biomedical and healthcare informatics. Big data analytics applications have unlocked innovative opportunities to extract hidden knowledge and develop advanced computational approaches to provide improved healthcare. Computational health informatics has come as an emerging field that offers enormous research opportunities for development of computational techniques that are applicable in healthcare system. Bioinformatics also provides many computational tools and techniques to analyze huge biomolecular datasets to understand disease and enables by relating genetics and proteomics with healthcare data. This chapter presents a comprehensive review of the potential of utilizing existing computational methods including machine learning as well as deep learning technologies in healthcare sector. It also looks at the contribution of bioinformatics, healthcare informatics, and analytics in improving healthcare system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matthew Herland, Taghi M. Khoshgoftaar, and Randall Wald. 2014. A review of data mining using big data in health informatics. Journal of Big Data, Springer 1, 1 (2014), 2.

    Article  Google Scholar 

  2. Wullianallur Raghupathi and Viju Raghupathi. 2014. Big data analytics in healthcare: Promise and potential. Health Information Science and Systems 2, 1 (2014), 3.

    Google Scholar 

  3. Bonnie Feldman, Ellen M. Martin, and Tobi Skotnes. 2012. Big data in healthcare hype and hope. Technical Report, Dr. Bonnie 360 (2012).

    Google Scholar 

  4. Jimeng Sun and Chandan K. Reddy. 2013. Big data analytics for healthcare. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’13). ACM, New York, NY, 1525–1525.

    Google Scholar 

  5. Jelili Oyelade, Jumoke Soyemi, Itunuoluwa Isewon and Olawole Obembe, Bioinformatics, Healthcare Informatics and Analytics: An Imperative for Improved Healthcare System, International Journal of Applied Information Systems (IJAIS) – ISSN: 2249-0868, Foundation of Computer Science FCS, New York, USA Volume 8– No.5, February 2015, pp.1-6

    Google Scholar 

  6. Hersh W. 2009. “A stimulus to define informatics and health information technology”. BMC Med Inform Decision Making 9:24

    Article  Google Scholar 

  7. In Y. C., Tae-Min K., Myung S. K., Seong K. M. and Yeun-Jun C. 2013. Perspectives on Clinical Informatics: Integrating Large-Scale Clinical, Genomic, and Health Information for Clinical Care. Genomics and Informatics. Published online by Korea Genome Organization.

    Google Scholar 

  8. Friedman, C. 2009. “A fundamental theorem of biomedical informatics”. Journal of the American Medical Informatics Association, 16: 169-170.

    Article  Google Scholar 

  9. K. Priyanka and Nagarathna Kulennavar. 2014. A survey on big data analytics in health care. International Journal of Computer Science and Information Technologies 5, 4 (2014), 5865–5868.

    Google Scholar 

  10. Mykola Pechenizkiy, Alexey Tsymbal, and Seppo Puuronen. 2004. PCA-based feature transformation for classification: Issues in medical diagnostics. In Proceedings of the 17th IEEE Symposium on ComputerBased Medical Systems (CBMS’04). IEEE, 535–540.

    Google Scholar 

  11. Abdulhamit Subasi and M. Ismail Gursoy. 2010. EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Systems with Applications 37, 12 (2010), 8659–8666.

    Google Scholar 

  12. Andre S. Fialho, Federico Cismondi, Susana M. Vieira, Shane R. Reti, Joao M. C. Sousa, and Stan N.´ Finkelstein. 2012. Data mining using clinical physiology at discharge to predict ICU readmissions. Expert Systems with Applications 39, 18 (2012), 13158–13165.

    Google Scholar 

  13. Jimeng Sun, Candace D. McNaughton, Ping Zhang, Adam Perer, Aris Gkoulalas-Divanis, Joshua C. Denny, Jacqueline Kirby, Thomas Lasko, Alexander Saip, and Bradley A. Malin. 2014. Predicting changes in hypertension control using electronic health records from a chronic disease management program. Journal of the American Medical Informatics Association 21, 2 (2014), 337–344.

    Google Scholar 

  14. Mark A. Hall. 1999. Correlation-Based Feature Selection for Machine Learning. Ph.D. Dissertation. University of Waikato

    Google Scholar 

  15. M.A. Jabbar, Shirina Samreen, Rajanikanth Aluvalu, The Future of Health care: Machine Learning, International Journal of Engineering & Technology, 7 (4.6) (2018) 23–25

    Google Scholar 

  16. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436–44.

    Article  Google Scholar 

  17. LeCun Y, Ranzato M. Deep learning tutorial. In: Tutorials in International Conference on Machine Learning (ICML’13), 2013. Citeseer.

    Google Scholar 

  18. Svozil D, Kvasnicka V, Pospichal J. Introduction to multilayer feed-forward neural networks. Chemometr Intell Lab Syst 1997;39(1):43–62.

    Article  Google Scholar 

  19. T.M. NAVAMANI, Efficient Deep Learning Approaches for Health Informatics, Deep Learning and Parallel Computing Environment for Bioengineering Systems. https://doi.org/10.1016/B978-0-12-816718-2.00014-2 Copyright © 2019 Elsevier Inc, 123–137.

  20. Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 2010;11:33, 71–408.

    MathSciNet  MATH  Google Scholar 

  21. Hinton G, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput 2006;18(7):1527–54.

    Article  MathSciNet  Google Scholar 

  22. Peter C. Austin, Jack V. Tu, Jennifer E. Ho, Daniel Levy, and Douglas S. Lee. 2013. Using methods from the data-mining and machine-learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes. Journal of Clinical Epidemiology 66, 4 (2013), 398–407.

    Google Scholar 

  23. David J. Dittman, Taghi M. Khoshgoftaar, Randall Wald, and Amri Napolitano. 2013. Simplifying the utilization of machine learning techniques for bioinformatics. In 12th International Conference on Machine Learning and Applications (ICMLA’13). Vol. 2. IEEE, 396–403.

    Google Scholar 

  24. Ruogu Fang, Shaoting Zhang, Tsuhan Chen, and Pina Sanelli. 2015. Robust low-dose CT perfusion deconvolution via tensor total-variation regularization. IEEE Transaction on Medical Imaging 34, 7 (2015), 1533–1548.

    Google Scholar 

  25. Francisco Estella, Blanca L. Delgado-Marquez, Pablo Rojas, Olga Valenzuela, Belen San Roman, and Ignacio Rojas. 2012. Advanced system for autonomously classify brain MRI in neurodegenerative disease. In International Conference on Multimedia Computing and Systems (ICMCS’12). IEEE, 250–255.

    Google Scholar 

  26. Xinhua Dong, Ruixuan Li, Heng He, Wanwan Zhou, Zhengyuan Xue, and Hao Wu. 2015. Secure sensitive data sharing on a big data platform. Tsinghua Science and Technology 20, 1 (2015), 72–80

    Google Scholar 

  27. Thi Hong Nhan Vu, Namkyu Park, Yang Koo Lee, Yongmi Lee, Jong Yun Lee, and Keun Ho Ryu. 2010. Online discovery of heart rate variability patterns in mobile healthcare services. Journal of Systems and Software 83, 10 (2010), 1930–1940.

    Google Scholar 

  28. Alzheimer’s disease neuroimaging initiative. http://adni.loni.usc.edu/about/. (2015). Retrieved 02-15-2015-02.

  29. Jinn-Yi Yeh, Tai-Hsi Wu, and Chuan-Wei Tsao. 2011. Using data mining techniques to predict hospitalization of hemodialysis patients. Decision Support Systems 50, 2 (2011), 439–448

    Google Scholar 

  30. Births: Data from the National Community Child Health database. http://gov.wales/statistics-and-research/births-national-community-child-health-database/?lang=en. (2014). Retrieved 02-15-2015.

  31. K. Usha Rani. 2011. Analysis of heart diseases dataset using neural network approach. arXiv preprint arXiv:1110.2626 (2011).

    Google Scholar 

  32. Irfan Y. Khan, P. H. Zope, and S. R. Suralkar. 2013. Importance of artificial neural network in medical diagnosis disease like acute nephritis disease and heart disease. International Journal of Engineering Science and Innovative Technology (IJESIT) 2, 2 (2013), 210–217.

    Google Scholar 

  33. Hui Fang Huang, Guang Shu Hu, and Li Zhu. 2012. Sparse representation-based heartbeat classification using independent component analysis. Journal of Medical Systems 36, 3 (2012), 1235–1247.

    Google Scholar 

  34. PREDICT-HD project. https://www.predict-hd.net/. (2015). Retrieved 04-10-2015.

  35. Kiyana Zolfaghar, Naren Meadem, Ankur Teredesai, Senjuti Basu Roy, Si-Chi Chin, and Brian Muckian. 2013. Big data solutions for predicting risk-of-readmission for congestive heart failure patients. In 2013 IEEE International Conference on Big Data. 64–71.

    Google Scholar 

  36. Hospital episode statistics. http://www.hscic.gov.uk/hes. (2012). Retrieved 02-20-2015.

  37. Mehemmed Emre Celebi, Yuksel Alp Aslandogan, and Paul R. Bergstresser. 2005. Mining biomedical images with density-based clustering. In International Conference on Information Technology: Coding and Computing (ITCC’05). Vol. 1. IEEE, 163–168

    Google Scholar 

  38. Daniele Rav`ı, Charence Wong, Fani Deligianni, Melissa Berthelot, Javier Andreu-Perez, Benny Lo, and Guang-Zhong Yang, Deep Learning for Health Informatics, IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 21, NO. 1, pp.4–21, (2017)

    Google Scholar 

  39. Znaonui Liang, Gang Zhang, Jimmy Xiangji Huang, and Qmming Vivian Hu. 2014. Deep learning for healthcare decision making with EMRs. In 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM’14). 556–559.

    Google Scholar 

  40. Sergey M. Plis, Devon R. Hjelm, Ruslan Salakhutdinov, Elena A. Allen, Henry J. Bockholt, Jeffrey D. Long, Hans J. Johnson, Jane S. Paulsen, Jessica A. Turner, and Vince D. Calhoun. 2014. Deep learning for neuroimaging: A validation study. Frontiers in Neuroscience 8 (2014).

    Google Scholar 

  41. Mingkui Tan, Ivor W. Tsang, and Li Wang. 2014. Towards ultrahigh dimensional feature selection for big data. Journal of Machine Learning Research 15, 1 (2014), 1371–1429.

    Google Scholar 

  42. R. Ibrahim, N. A. Yousri, M. A. Ismail, and N. M. El-Makky, “Multi-level gene/mirna feature selection using deep belief nets and active learning,” in Proc. Eng. Med. Biol. Soc., 2014, pp. 3957–3960.

    Google Scholar 

  43. M. Khademi and N. S. Nedialkov, “Probabilistic graphical models and deep belief networks for prognosis of breast cancer,” in Proc. IEEE 14th Int. Conf. Mach. Learn. Appl., 2015, pp. 727–732.

    Google Scholar 

  44. D. Quang, Y. Chen, and X. Xie, “Dann: A deep learning approach for annotating the pathogenicity of genetic variants,” Bioinformatics, vol. 31, p. 761–763, 2014.

    Article  Google Scholar 

  45. B. Ramsundar, S. Kearnes, P. Riley, D. Webster, D. Konerding, and V. Pande, “Massively multitask networks for drug discovery,” ArXiv e-prints, Feb. 2015.

    Google Scholar 

  46. S. Zhang et al., “A deep learning framework for modeling structural features of rna-binding protein targets,” Nucleic Acids Res., vol. 44, no. 4, pp. e32–e32, 2016.

    Google Scholar 

  47. K. Tian, M. Shao, S. Zhou, and J. Guan, “Boosting compound-protein interaction prediction by deep learning,” in Proc. IEEE Int. Conf. Bioinformat. Biomed., 2015, pp. 29–34.

    Google Scholar 

  48. C. Angermueller, H. Lee, W. Reik, and O. Stegle, “Accurate prediction of single-cell dna methylation states using deep learning,” bioRxiv, 2016, Art. no. 055715

    Google Scholar 

  49. J. Shan and L. Li, “A deep learning method for microaneurysm detection in fundus images,” in Proc. IEEE Connected Health, Appl., Syst. Eng. Technol., 2016, pp. 357–358.

    Google Scholar 

  50. D. Nie, H. Zhang, E. Adeli, L. Liu, and D. Shen, “3d deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients,” in Proc. MICCAI, 2016, pp. 212–220. [Online]. Available: https://doi.org/10.1007/978-3-319-46723-8_25

  51. J. Kleesiek et al., “Deep MRI brain extraction: A 3D convolutional neural network for skull stripping,” NeuroImage, vol. 129, pp. 460–469, 2016.

    Article  Google Scholar 

  52. B. Jiang, X. Wang, J. Luo, X. Zhang, Y. Xiong, and H. Pang, “Convolutional neural networks in automatic recognition of trans-differentiated neural progenitor cells under bright-field microscopy,” in Proc. Instrum. Meas., Comput., Commun. Control, 2015, pp. 122–126.

    Google Scholar 

  53. M. Havaei, N. Guizard, H. Larochelle, and P. Jodoin, “Deep learning trends for focal brain pathology segmentation in MRI,” CoRR, vol. abs/1607.05258, 2016. [Online]. Available: http://arxiv.org/abs/1607.05258

  54. D. Kuang and L. He, “Classification on ADHD with deep learning,” in Proc. Cloud Comput. Big Data, Nov. 2014, pp. 27–32.

    Google Scholar 

  55. F. Li, L. Tran, K. H. Thung, S. Ji, D. Shen, and J. Li, “A robust deep model for improved classification of ad/mci patients,” IEEE J. Biomed. Health Inform., vol. 19, no. 5, pp. 1610–1616, Sep. 2015.

    Article  Google Scholar 

  56. K. Fritscher, P. Raudaschl, P. Zaffino, M. F. Spadea, G. C. Sharp, and R. Schubert, “Deep neural networks for fast segmentation of 3d medical images,” in Proc. MICCAI, 2016, pp. 158–165. [Online]. Available: https://doi.org/10.1007/978-3-319-46723-8_19

  57. X. Zhen, Z. Wang, A. Islam, M. Bhaduri, I. Chan, and S. Li, “Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation,” Med. Image Anal., vol. 30, pp. 120–129, 2016.

    Article  Google Scholar 

  58. T. Brosch et al., “Manifold learning of brain mris by deep learning,” in Proc. MICCAI, 2013, pp. 633–640.

    Google Scholar 

  59. T. Xu, H. Zhang, X. Huang, S. Zhang, and D. N. Metaxas, “Multimodal deep learning for cervical dysplasia diagnosis,” in Proc. MICCAI, 2016, pp. 115–123. [Online]. Available: https://doi.org/10.1007/978-3-319-46723-8_14

  60. M. Avendi, A. Kheradvar, and H. Jafarkhani, “A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac mri,” Med. Image Anal., vol. 30, pp. 108–119, 2016.

    Article  Google Scholar 

  61. Y. Zhou and Y. Wei, “Learning hierarchical spectral-spatial features for hyperspectral image classification,” IEEE Trans. Cybern., vol. 46, no. 7, pp. 1667–1678, Jul. 2016.

    Google Scholar 

  62. J. Wang, J. D. MacKenzie, R. Ramachandran, and D. Z. Chen, “A deep learning approach for semantic segmentation in histology tissue images,” in Proc. MICCAI, 2016, pp. 176–184. [Online]. Available: https://doi.org/10.1007/978-3-319-46723-8_21

  63. Y. Yan, X. Qin, Y. Wu, N. Zhang, J. Fan, and L. Wang, “A restricted Boltzmann machine based two-lead electrocardiography classification,” in Proc. 12th Int. Conf. Wearable Implantable Body Sens. Netw., Jun. 2015, pp. 1–9.

    Google Scholar 

  64. A. Wang, C. Song, X. Xu, F. Lin, Z. Jin, and W. Xu, “Selective and compressive sensing for energy-efficient implantable neural decoding,” in Proc. Biomed. Circuits Syst. Conf., Oct. 2015, pp. 1–4

    Google Scholar 

  65. H. Shin, L. Lu, L. Kim, A. Seff, J. Yao, and R. M. Summers, “Interleaved text/image deep mining on a large-scale radiology database for automated image interpretation,” CoRR, vol. abs/1505.00670, 2015. [Online]. Available: http://arxiv.org/abs/1505.00670

  66. Z. C. Lipton, D. C. Kale, C. Elkan, and R. C. Wetzel, “Learning to diagnose with LSTM recurrent neural networks,” CoRR, vol. abs/1511.03677, 2015. [Online]. Available: http://arxiv.org/abs/1511.03677

  67. Z. Liang, G. Zhang, J. X. Huang, and Q. V. Hu, “Deep learning for healthcare decision making with emrs,” in Proc. Int. Conf. Bioinformat. Biomed., Nov 2014, pp. 556–559.

    Google Scholar 

  68. E. Putin et al., “Deep biomarkers of human aging: Application of deep neural networks to biomarker development,” Aging, vol. 8, no. 5, pp. 1–021, 2016.

    Google Scholar 

  69. Andrzej Polanski and Marek Kimmel 2007. Bioinformatics. New York: Springer Verlag Berlin Heidelberg.

    MATH  Google Scholar 

  70. Prerna S., and Kimberly T., 2009. “Translational Bioinformatics and Healthcare Informatics: Computational and Ethical Challenges”. Online Research Journal Perspectives in Health Information Management, 6.

    Google Scholar 

  71. Naiem T. Issa, Stephen W. Byers, and Sivanesan Dakshanamurthy. 2014. Big data: The next frontier for innovation in therapeutics and healthcare. Expert Review of Clinical Pharmacology 7, 3 (2014), 293–298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meher, J. (2021). Computational Methods for Health Informatics. In: Manocha, A.K., Jain, S., Singh, M., Paul, S. (eds) Computational Intelligence in Healthcare. Health Information Science. Springer, Cham. https://doi.org/10.1007/978-3-030-68723-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68723-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68722-9

  • Online ISBN: 978-3-030-68723-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics