Skip to main content

Emerging Trends of Bioinformatics in Health Informatics

  • Chapter
  • First Online:
Computational Intelligence in Healthcare

Part of the book series: Health Information Science ((HIS))

Abstract

In the era of digital world, due to constantly evolving computational technology, bioinformatics propelled out of research labs into our everyday lives. Emerging advances in bioinformatics enable home computers to have powerful supercomputers, reducing the research expense, enhancing scientific efficiency, and accelerating novel discoveries. Bioinformatics can simply be understood as a field of data science based on the amalgamation of computers and biology. Nowadays, one of the major obstacles for humans is to attain a health system in which each patient could have a personalized medicine, as each patient possesses a unique genome, proteome, and metabolome. Hence, to understand complexity underlying diseases and its mechanism, bioinformatics can be a fundamental approach. One of the objectives of chapter is to present a comprehensive overview of bioinformatics, various omics tools and its applications, health informatics, and healthcare system. Big data technologies and their role in biomedical research is briefly addressed. The later dimension focuses on bioinformatics resources towards personalized medicine. The last section highlights the key commercial platforms for healthcare data analytics and challenges along with future prospects of bioinformatics in healthcare, which will help the readers to effectively use the information for their research endeavours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A, T. (2010). Best Practices for QSAR Model Development, Validation, and Exploitation. Molecular Informatic, 476–488. https://doi.org/10.1002/minf.201000061

  2. Abraham, I. (2018). Socio-economics of Personalized Medicine in Asia. East Asian Science. In I. Abraham, Socio-economics of Personalized Medicine in Asia. East Asian Science (pp. 551–554). taiwan: East Asian Science, Technology and Society. https://doi.org/10.1215/18752160-4207524

    Chapter  Google Scholar 

  3. Ahmed Hosny, H. J. (2019). Handcrafted versus deep learning radiomics for prediction of cancer therapy response. The lancet-Digital health, 1, 106–107. Retrieved from https://www.thelancet.com/pdfs/journals/landig/PIIS2589-7500(19)30062-7.pdf

    Article  Google Scholar 

  4. Akram Alyass, M. T. (2015). From big data analysis to personalized medicine for all: challenges and opportunities. BMC medical genomics, 1–12. https://doi.org/10.1186/s12920-015-0108-y

  5. Atul J Butte, R. C. (2006). Finding Disease-Related Genomic Experiments Within an International Repository: First Steps in Translational Bioinformatics. AMIA Annual Symposium Proceedings, 106–110. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839582/

  6. Aurélien Grosdidier, V. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res, W270–W277. https://doi.org/10.1093/nar/gkr366

  7. Aziz, H. (2016). A review of the role of public health informatics in healthcare. Journal of Taibah University Medical Sciences, 1–5. https://doi.org/10.1016/j.jtumed.2016.08.011

  8. Bruno J. Neves, R.-F. (2018). QSAR-Based Virtual Screening: Advances and Applications in Drug Discovery. Frontiers in pharmacology, 1–7. https://doi.org/10.3389/fphar.2018.01275

  9. Cantor, M. N. (2011). Translational informatics: an industry perspective. Journal of American Medical Informatics Association, 1–3. https://doi.org/10.1136/amiajnl-2011-000588

  10. Cascella M, R. M. (2020). Features, Evaluation and Treatment Coronavirus (COVID-19). Florida: StatPearls Publishing. Retrieved from https://europepmc.org/article/NBK/NBK554776

  11. Casey Lynnette Overby, a.-H. (2013). Personalized medicine: challenges and opportunities for translational bioinformatics. Future Medicine, 453–462. https://doi.org/10.2217/pme.13.30

  12. Catalyst, N. (2018). Healthcare Big Data and the Promise of Value-Based Care. NEJM, 00–00. Retrieved from https://catalyst.nejm.org/doi/full/10.1056/CAT.18.0290

  13. Christopher J Kelly, A. J. (2017). Promoting innovation in healthcare. Future Healthcare Journal, 121–125. https://doi.org/10.7861/futurehosp.4-2-121

  14. Corwin Hansch, S. D. (1977). Substituent constants for correlation analysis. J.Med Chem, 304–306. https://doi.org/10.1021/jm00212a024

  15. Cosimo Tuena, M. S.-Á. (2020). Predictive Precision Medicine: Towards the Computational Challenge. In M. S.-Á. Cosimo Tuena, P5 eHealth: An Agenda for the Health Technologies (pp. 71–86). Switzerland: Springer Open. Retrieved from https://doi.org/10.1007/978-3-030-27994-3

  16. CytoPacq: a web-interface for simulating multi-dimensional cell imaging. (2019). Oxford University Press. Bioimage informatics, 1–3. https://doi.org/10.1093/bioinformatics/btz417

  17. Dallakyan, S. &. (2015). Small-molecule library screening by docking with PyRx. Methods Mol Biol, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19

  18. David Edwards, J. S. (2009). Bioinformatics tools and applications. New York: Springer, New York, NY. https://doi.org/10.1007/978-0-387-92738-1

    Book  Google Scholar 

  19. David Wiesner, D. S. (2019). CytoPacq: a web-interface for simulating multi-dimensional cell imaging. In D. S. David Wiesner, Bioinformatics (pp. 4531–4533). UK: Oxford University Press. https://doi.org/10.1093/bioinformatics/btz417

    Chapter  Google Scholar 

  20. Divya Kumari, ravi kumar. 2014. “Impact of Biological Big Data in Bioinformatics.” International Journal of Computer Applications 22–24. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.800.2587&rep=rep1&type=pdf.

  21. Enis Afgan, D. (2016). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic acids research, 3–10. https://doi.org/10.1093/nar/gkw343

  22. EscheriaFrancesco, F. R.-A.-B. (2015). Future water quality monitoring — Adapting tools to deal with mixtures of pollutants in water resource management. Science of The Total Environment, 540–551. https://doi.org/10.1016/j.scitotenv.2014.12.057

  23. FMartin-Sancheza, I. G.-F. (2004). Synergy between medical informatics and bioinformatics: facilitating genomic medicine for future health care. Journal of Biomedical informatics, 30–42. https://doi.org/10.1016/j.jbi.2003.09.003

  24. Gatta, R. D. (2020). Integrating radiomics into holomics for personalised oncology: from algorithms to bedside. European Radiology Experimental, 1–11. https://doi.org/10.1186/s41747-019-0143-0

  25. Grifantini, R. L. (2018). Big Data: Challenge and Opportunity for Translational and Industrial Research in Healthcare. frontiers in Digital Humanities, 1–13. https://doi.org/10.3389/fdigh.2018.00013

  26. Guedes, R. C.-F. (2018). Computer-aided drug design in new druggable targets for the next generation of immune-oncology therapies. Wiley Online Library, 1–27. https://doi.org/10.1002/wcms.1397

  27. Guy Haskin Fernald, E. C. (2011). Bioinformatics challenges for personalized medicine. Oxford Journals, 1741–1748. https://doi.org/10.1093/bioinformatics/btr295

  28. Hamed Nadri, B. R. (2017). The Top 100 Articles in the Medical Informatics: a Bibliometric Analysis. journal of Medical Systems, 1–12. https://doi.org/10.1007/s10916-017-0794-4

  29. Helen M. Berman, J. W. (2000). The Protein Data Bank. Nucleic acids research, 235–242. Retrieved from https://doi.org/10.1093/nar/28.1.235

  30. Huang, H. K. (2010). PACS and imaging informatics: Basic principles and Applications. Hong kong: Wiley, 2010. Retrieved from https://books.google.co.in/books/about/PACS_and_Imaging_Informatics.html?id=Pjjkyae_55oC&source=kp_book_description&redir_esc=y

    Google Scholar 

  31. Hudis, C. A. (2007). Trastuzumab — Mechanism of Action and Use in Clinical Practice. N Engl J Med, 39–51. https://doi.org/10.1056/NEJMra043186

  32. Ibrahim IM, A. D. (2020). COVID-19 spike-host cell receptor GRP78 binding site prediction. J Infect., 554–562. https://doi.org/10.1016/j.jinf.2020.02.026

  33. Israel Ehizuelen Ebhohimen, L. E. (2020). In L. E. Israel Ehizuelen Ebhohimen, Phytochemicals as Lead Compounds for New Drug Discovery (pp. 25–37). Uganda: Elsevier. Retrieved from https://doi.org/10.1016/B978-0-12-817890-4.00003-2

  34. Ivan Merelli, H.-S. (2014). Managing, Analysing, and Integrating Big Data in Medical Bioinformatics: Open Problems and Future Perspectives. BioMed Research International, 1–13. Retrieved from https://doi.org/10.1155/2014/134023

  35. Jake Luo, M. W. (2016). Big Data Application in Biomedical Research and Health Care: A Literature Review. Biomedical Informatics Insights, 1–11. Retrieved from https://doi.org/10.4137/BII.S31559

  36. Jason Kim, J. Z. (2020). Advanced bioinformatics rapidly identifies existing therapeutics for patients with coronavirus disease-2019 (COVID-19). Journal of Translational Medicine, 1–9. https://doi.org/10.1186/s12967-020-02430-9

  37. Jelili Oyelade, J. S. (2015). Bioinformatics, Healthcare Informatics and Analytics: An Imperative for Improved Healthcare System. International Journal of Applied Information Systems, 8, 1–16. https://doi.org/10.5120/ijais15-451318

    Article  Google Scholar 

  38. Jens Schneider, R. W. (2019). Open source bioimage informatics tools for the analysis of DNA damage and associated biomarkers. Journal of Laboratory and Precision Medicine., 1–28. https://doi.org/10.21037/jlpm.2019.04.05

  39. Kai Y Wong, A. G. (2014). QSAR analysis on tacrine-related acetylcholinesterase inhibitors. Journal of Biomedical Science, 21, 84. https://doi.org/10.1186/s12929-014-0084-0

  40. Kalakota, T. D. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 94–98. https://doi.org/10.7861/futurehosp.6-2-94

  41. Kudyba, S. P. (2018). Healthcare Informatics: Improving Efficiency through Technology, Analytics, and Management. Florida: CRC Press. Retrieved from https://books.google.co.in/books/about/Healthcare_Informatics.html?id=gu4bDAAAQBAJ&redir_esc=y

    Book  Google Scholar 

  42. Kuznetsov, V. L.-S. (2013). How bioinformatics influences health informatics: usage of biomolecular sequences, expression profiles and automated microscopic image analyses for clinical needs and public health. Health Inf Sci Syst, 1–18. Retrieved from https://doi.org/10.1186/2047-2501-1-2

  43. RenéMeiera, C. (2017). Bioinformatics can boost metabolomics research. Journal of Biotechnology, 137–141. https://doi.org/10.1016/j.jbiotec.2017.05.018

  44. Lu Chen, J. K.-C. (2012). From laptop to benchtop to bedside: Structure-based Drug Design on Protein Targets. Curr Pharm Des, 1217–1239. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820560/

  45. Mann, R. A. (2003). Mass spectrometry-based proteomics. Nature, 198–207. https://doi.org/10.1038/nature01511

  46. Mariamena Arbitrio, M. T. (2016). Identification of polymorphic variants associated with erlotinib-related skin toxicity in advanced non-small cell lung cancer patients by DMET microarray analysis. Cancer Chemotherapy Pharmacology, 205–209. https://doi.org/10.1007/s00280-015-2916-3

  47. Mayya Sedova, L. J. (2020). Coronavirus3D: 3D structural visualization of COVID-19 genomic divergence. Structural bioinformatics, 1–3. https://doi.org/10.1093/bioinformatics/btaa550

  48. Metzker, M. L. (2010). Sequencing technologies — the next generation. Nature Reviews Genetics, 31–46. https://doi.org/10.1038/nrg2626

  49. Michael R Stratton, P. J. (2009). The cancer genome. Nature, 719–724. https://doi.org/10.1038/nature07943

  50. Michael W Sneddon, J. R. (2011). Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nature Methods, 77–83. https://doi.org/10.1038/nmeth.1546

  51. Morteza Heidari, S. M. (2020). Development and Assessment of a New Global Mammographic Image Feature Analysis Scheme to Predict Likelihood of Malignant Cases. IEEE Transactions on Medical Imaging, 1235–1244. https://doi.org/10.1109/TMI.2019.2946490

  52. N M Luscombe, D. G. (2001). What is bioinformatics? A proposed definition and overview of the field. Methods Inf Med., 40(4):346–58. Retrieved from https://pubmed.ncbi.nlm.nih.gov/11552348/

  53. Nan Zhang& Shifei Ding &. (2018). Multimodal correlation deep belief networks for multi-view classification. Applied Intelligence- Springer nature, 1–12. https://doi.org/10.1007/s10489-018-1379-8

  54. Nazipova, N. N. (2018). Big Data in Bioinformatics. Mathematical Biology and Bioinformatics, 1–17. https://doi.org/10.17537/2018.13.t1

  55. Pankaj Agarwal. (2015). Next Generation Distributed Computing for Cancer Research. Cancer Informatics, 1–13. https://doi.org/10.4137/CIN.S16344

  56. Perry L. Miller. (2000). Opportunities at the Intersection of Bioinformatics and Health Informatics: A Case Study. Journal of the American Medical Informatics Association, 431–438. Retrieved from https://doi.org/10.1136/jamia.2000.0070431

  57. Pettersen EF, G. T. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem, 1605–1612. https://doi.org/10.1002/jcc.20084

  58. Pires DE, B. T. (2015). pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem, 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

  59. Poroikov, V. V. (2020). Computer-Aided Drug Design: from Discovery of Novel Pharmaceutical Agents to Systems Pharmacology. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry,SpringerLink, 216–227. https://doi.org/10.1134/S1990750820030117

  60. Prerna Sethi, K. T. (2009). Translational Bioinformatics and Healthcare Informatics: Computational and Ethical Challenges. Perspectives Health Information Management, 16;6(Fall):1h. Retrieved from https://pubmed.ncbi.nlm.nih.gov/20169020/

  61. Richard A. Friesner, J. L. (2004). Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. ACS Publications, 1739–1749. https://doi.org/10.1021/jm0306430

  62. Roberto Gatta, A. D. (2020). Integrating radiomics into holomics for personalised oncology: from algorithms to bedside. European Radiology Experimental, 1–9. https://doi.org/10.1186/s41747-019-0143-0

  63. Runxin Guo, Y. (2018). Bioinformatics applications on Apache Spark. Giga Science, 1–10. https://doi.org/10.1093/gigascience/giy098

  64. Russ B Altman, J. M. (2003). Defining bioinformatics and structural bioinformatics. Methods Biochem Analysis, 44:3–14. Retrieved from https://pubmed.ncbi.nlm.nih.gov/12647379/

  65. Sabyasachi Dash, S. K. (2019). Big data in healthcare: management, analysis and future prospects. Journal of Big data, 1–25. Retrieved from https://doi.org/10.1186/s40537-019-0217-0

  66. Sahoo, S. K. (2019). Secure Big Data Computing in Cloud: An Overview. Encyclopedia of Big Data Technologies, 25–32. https://doi.org/10.1007/978-3-319-77525-8_233

  67. Samiddha Mukherjee, R. S. (2016). Big Data – Concepts, Applications, Challenges and Future Scope. International Journal of Advanced Research in Computer and Communication Engineering, 66–74. https://doi.org/10.17148/IJARCCE.2016.5215

  68. Sarah M Keating, N. L. (2013). Supporting SBML as a model exchange format in software applications. In S. M. Novère, Methods in Molecular Biology (pp. 201–225). Totowa: Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-450-0_11

  69. Schork, N. J. (2019). Artificial Intelligence and Personalized Medicine. USA: Springer, Cham. https://doi.org/10.1007/978-3-030-16391-4_11

  70. Shruti Mishra, P. (2020). Bioinformatics Approach for COVID-19 (Coronavirus) Disease Prevention Treatment and Drug Validation. EJMO, 234–238. https://doi.org/10.14744/ejmo.2020.97358

  71. Singh, N. B. (2018). Role of computer aided drug design in drug development and drug discovery. International journal of pharmaceutical sciences and research, 1405–1415. https://doi.org/10.13040/IJPSR.0975-8232.9(4).1405-15

  72. Steve Olson, S. H. (2012). Integrating Large-Scale Genomic Information into Clinical Practice. washington: National Academies Press (US). Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK91500/

  73. Torsten Schwede, J. K. (2003). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids research, 3381–3385. Retrieved from https://doi.org/10.1093/nar/gkg520

  74. Truong, H.-L. S. (2010). Cloud computing for small research groups in computational science and engineering: Current status and outlook. Researchgate, 76–91. https://doi.org/10.1007/s00607-010-0120-1

  75. Vajda, A. (2011). Programming Many-Core Chips. US: Springer US. https://doi.org/10.1007/978-1-4419-9739-5

  76. Valeska, M. D. (2019). The Role of Bioinformatics in Personalized Medicine: Your Future Medical Treatment. OPINI, 1-5. Retrieved from https://www.researchgate.net/publication/337623077_The_Role_of_Bioinformatics_in_Personalized_Medicine_Your_Future_Medical_Treatment

  77. VartikaTomar, M. K. (2018). Small Molecule Drug Design. In M. K. VartikaTomar, Encyclopedia of Bioinformatics and Computational Biology (pp. 741–760). New Delhi: Elsevier Inc. https://doi.org/10.1016/B978-0-12-809633-8.20157-X

    Chapter  Google Scholar 

  78. Vojtech Huser, D. S.-B. (2018). Data sharing platforms for de-identified data from human clinical trials. Society for clinical trials, 1–11. https://doi.org/10.1177/1740774518769655

  79. Vreven T, B. K. (2006). Combining Quantum Mechanics Methods with Molecular Mechanics Methods in ONIOM. J Chem Theory Comput., 815–826. https://doi.org/10.1021/ct050289g

  80. Wadood A, Ahmed N, Shah L, Ahmad A, Hassan H, Shams S. 2013. “In-silico drug design: An approach which revolutionarised the drug discovery process.” OA Drug Design & Delivery 1(1):3. http://www.oapublishinglondon.com/article/1119.

    Article  Google Scholar 

  81. Wanbo Tai, L. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. cell and Molecular biology, 613–620. https://doi.org/10.1038/s41423-020-0400-4

  82. Wang, X. (2011). Role of clinical bioinformatics in the development of network-based Biomarkers. Journal of Clinical Bioinformatics, 1–3. https://doi.org/10.1186/2043-9113-1-28

  83. Wilm, M. M. (1994). Error-Tolerant Identification of Peptides in Sequence Databases by Peptide Sequence Tags. ACS Publications research, 4390–4399. https://doi.org/10.1021/ac00096a002

  84. Xuebing Wu, R. (2008). Network-based global inference of human disease genes. Molecular systems biology, 1–11. https://doi.org/10.1038/msb.2008.27

  85. Yadi Zhou, P. F. (2020). Artificial intelligence in COVID-19 drug repurposing. The Lancet Digital Health, 1–10. https://doi.org/10.1016/S2589-7500(20)30192-8

  86. Yoshihiro Yamanishi, M. (2014). DINIES: drug–target interaction network inference engine based on supervised analysis. Nucleic acids research, W39–W45. Retrieved from https://doi.org/10.1093/nar/gku337

  87. Yuanmei Zhu, D. Y. (2020). Design of Potent Membrane Fusion Inhibitors against SARS-CoV-2, an Emerging Coronavirus with High Fusogenic Activity. Journal of Virology, 1–30. https://doi.org/10.1128/JVI.00635-20

  88. Z. Faizal Khan, S. R. (2020). Recent Developments in Artificial Intelligence for Consumer Healthcare Integrative Analysis. Journal of Healthcare Engineering, 1–15. https://doi.org/10.1155/2020/8894694

  89. Zachary D. Stephens, S. (2015). Big Data: Astronomical or Genomical? PLOS Biology, 1–11. https://doi.org/10.1371/journal.pbio.1002195

  90. Zhou, Y. H. (2020). Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery, 1–18. https://doi.org/10.1038/s41421-020-0153-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neetu Jabalia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, M., Mondal, S., Bhattacharjee, S., Jabalia, N. (2021). Emerging Trends of Bioinformatics in Health Informatics. In: Manocha, A.K., Jain, S., Singh, M., Paul, S. (eds) Computational Intelligence in Healthcare. Health Information Science. Springer, Cham. https://doi.org/10.1007/978-3-030-68723-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68723-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68722-9

  • Online ISBN: 978-3-030-68723-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics