Skip to main content

Protein Visualization in Leukemia Cells

  • Chapter
  • First Online:
Epigenetics and Proteomics of Leukemia

Abstract

Alterations in histone modifications have been linked to deregulation of many genes expression important for cancer development and unregulated cancer progression. Therefore, epigenetic modifiers used in cancer therapy have an impact to remodel chromatin with replacement of histone modifications and thus restore the normal state of cells. In Chap. 8 we demonstrated the comparative analysis of histones, their variants and modifications during granulocytic differentiation of leukemic cells. By using computational methods for protein localization estimation the changes in modifications of histones H3 and H4 and other proteins important for leukemia cell differentiation were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9(6):1191–1200

    Article  CAS  Google Scholar 

  • Barrero MJ, Sese B, Marti M, Belmonte JCI (2013) Macro histone variants are critical for the differentiation of human pluripotent cells. J Biol Chem 288(22):16110–16116

    Article  CAS  Google Scholar 

  • Blake DJ, Nawrotzki R, Peters MF, Froehner SC, Davies KE (1996) Isoform diversity of dystrobrevin, the murine 87-kda postsynaptic protein. J Biol Chem 271(13):7802–7810

    Article  CAS  Google Scholar 

  • Borutinskaite VV, Magnusson KE, Navakauskiene R (2011) α-Dystrobrevin distribution and association with other proteins in human promyelocytic NB4 cells treated for granulocytic differentiation. Mol Biol Rep 38(5):3001–3011. https://doi.org/10.1007/s11033-010-9965-9

    Article  CAS  Google Scholar 

  • Bruno C (2014) Dystrophin complex functions as a scaffold for signalling proteins. Biochim Biophys Acta (BBA)-Biomembr 1838(2):635–642

    Article  Google Scholar 

  • Butler GS, Overall CM (2009) Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat Rev Drug Discovery 8(12):935–948

    Article  CAS  Google Scholar 

  • Di Liegro CM, Schiera G, Di Liegro I (2018) H1.0 linker histone as an epigenetic regulator of cell proliferation and differentiation. Genes 9(6):310

    Google Scholar 

  • Gingras J, Gawor M, Bernadzki KM, Grady RM, Hallock P, Glass DJ, Sanes JR, Proszynski TJ (2016) α-Dystrobrevin-1 recruits Grb2 and α-catulin to organize neurotransmitter receptors at the neuromuscular junction. J Cell Sci 129(5):898–911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godde JS, Ura K (2009) Dynamic alterations of linker histone variants during development. Int J Dev Biol 53(2–3):215–224. https://doi.org/10.1387/ijdb.082644jg

    Article  CAS  Google Scholar 

  • Grady RM, Zhou H, Cunningham JM, Henry MD, Campbell KP, Sanes JR (2000) Maturation and maintenance of the neuromuscular synapse: genetic evidence for roles of the dystrophin–glycoprotein complex. Neuron 25(2):279–293

    Article  CAS  Google Scholar 

  • Haas S, Trumpp A, Milsom MD (2018) Causes and consequences of hematopoietic stem cell heterogeneity. Cell Stem Cell 22(5):627–638

    Article  CAS  Google Scholar 

  • Jin C, Felsenfeld G (2006) Distribution of histone H3.3 in hematopoietic cell lineages. Proc Natl Acad Sci 103(3):574–579

    Article  CAS  Google Scholar 

  • Kulyte A, Navakauskiene R, Treigyte G, Gineitis A, Bergman T, Magnusson KE (2002) Characterization of human alpha-dystrobrevin isoforms in HL-60 human promyelocytic leukemia cells undergoing granulocytic differentiation. Mol Biol Cell 13(12):4195–4205. https://doi.org/10.1091/mbc.E02-03-0128

    Article  CAS  Google Scholar 

  • Laurenti E, Göttgens B (2018) From haematopoietic stem cells to complex differentiation landscapes. Nature 553(7689):418–426

    Article  CAS  Google Scholar 

  • Li D, Zeng Z (2019) Epigenetic regulation of histone H3 in the process of hepatocellular tumorigenesis. Biosci. Rep. 39(8):1–9

    Google Scholar 

  • Lord KA, Hoffman-Liebermann B, Liebermann DA (1990) Complexity of the immediate early response of myeloid cells to terminal differentiation and growth arrest includes ICAM-1, Jun-B and histone variants. Oncogene 5(3):387–396

    CAS  PubMed  Google Scholar 

  • Merzvinskyte R, Treigyte G, Savickiene J, Magnusson KE, Navakauskiene R (2006) Effects of histone deacetylase inhibitors, sodium phenyl butyrate and vitamin B3, in combination with retinoic acid on granulocytic differentiation of human promyelocytic leukemia HL-60 cells. In: Diederich M (ed) Signal Transduction Pathways, PT B: Stress Signaling and Transcriptional Control, Annals of the New York Academy of Sciences, vol 1091, pp 356–367. https://doi.org/10.1196/annals.1378.080. Cell Signaling World 2006 Conference, Luxembourg, Luxembourg, Jan 25–28, 2006

  • Monaghan L, Massett ME, Bunschoten RP, Hoose A, Pirvan PA, Liskamp RMJ, Jørgensen HG, Huang X (2019) The emerging role of H3K9me3 as a potential therapeutic target in acute myeloid leukaemia. Front Oncol 9:705

    Article  Google Scholar 

  • Müller-Tidow C, Klein HU, Hascher A, Isken F, Tickenbrock L, Thoennissen N, Agrawal-Singh S, Tschanter P, Disselhoff C, Wang Y, et al. (2010) Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia. Blood J Am Soc Hematol 116(18):3564–3571

    Google Scholar 

  • Murphy S, Ohlendieck K (2016) The biochemical and mass spectrometric profiling of the dystrophin complexome from skeletal muscle. Comput Struct Biotechnol J 14:20–27

    Article  CAS  Google Scholar 

  • Navakauskiene R, Treigyte G, Borutinskaite VV, Matuzevicius D, Navakauskas D, Magnusson KE (2012) Alpha-dystrobrevin and its associated proteins in human promyelocytic leukemia cells induced to apoptosis. J Proteomics 75(11):3291–3303. https://doi.org/10.1016/j.jprot.2012.03.041

    Article  CAS  Google Scholar 

  • Navakauskiene R, Borutinskaite VV, Treigyte G, Savickiene J, Matuzevicius D, Navakauskas D, Magnusson KE (2014) Epigenetic changes during hematopoietic cell granulocytic differentiation—comparative analysis of primary CD34+cells, KG1 myeloid cells and mature neutrophils. BMC Cell Biol 15:4. https://doi.org/10.1186/1471-2121-15-4

    Article  Google Scholar 

  • Pan C, Fan Y (2016) Role of H1 linker histones in mammalian development and stem cell differentiation. Biochim Biophys Acta (BBA) Gene Regul Mech 1859(3):496–509

    Article  CAS  Google Scholar 

  • Paul TA, Bies J, Small D, Wolff L (2010) Signatures of polycomb repression and reduced H3K4 trimethylation are associated with p15INK4b DNA methylation in AML. Blood J Am Soc Hematol 115(15):3098–3108

    CAS  Google Scholar 

  • Roberts RG (2001) Dystrophins and dystrobrevins. Genome Biol 2(4):reviews3006–1

    Google Scholar 

  • Senter L, Ceoldo S, Petrusa MM, Salviati G (1995) Phosphorylation of dystrophin—effects on actin-binding. Biochem Biophys Res Commun 206(1):57–63. https://doi.org/10.1006/bbrc.1995.1009

    Article  CAS  Google Scholar 

  • Sidney LE, Branch MJ, Dunphy SE, Dua HS, Hopkinson A (2014) Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem cells 32(6):1380–1389

    Article  CAS  Google Scholar 

  • Terme JM, Sesé B, Millán-Ariño L, Mayor R, Belmonte JCI, Barrero MJ, Jordan A (2011) Histone H1 variants are differentially expressed and incorporated into chromatin during differentiation and reprogramming to pluripotency. J Biol Chem 286(41):35347–35357

    Article  CAS  Google Scholar 

  • Wang Y, Long H, Yu J, Dong L, Wassef M, Zhuo B, Li X, Zhao J, Wang M, Liu C, et al. (2018) Histone variants H2A.Z and H3.3 coordinately regulate PRC2-dependent H3K27me3 deposition and gene expression regulation in mES cells. BMC Biol 16(1):1–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Navakauskienė, R., Navakauskas, D., Borutinskaitė, V., Matuzevičius, D. (2021). Protein Visualization in Leukemia Cells. In: Epigenetics and Proteomics of Leukemia. Springer, Cham. https://doi.org/10.1007/978-3-030-68708-3_8

Download citation

Publish with us

Policies and ethics