Skip to main content

Protein Phosphorylation in Leukemia

  • Chapter
  • First Online:
Epigenetics and Proteomics of Leukemia

Abstract

Despite the growing volume of studies demonstrating the importance of post-translational modifications modulating protein functions we still need to reveal its impact to normal and pathogenic cell development. Protein tyrosine phosphorylation is the protein modification that plays an essential role in cellular signaling and function regulation. In Chap. 5 we present our studies designed to protein tyrosine phosphorylation impact in the pathogenesis of AML and its possible role linked to normal cell proliferation, differentiation and apoptosis. The results of the studies presented here demonstrate the changes and distribution of tyrosine phosphorylated proteins in the cytoplasm and the nucleus during differentiation of leukemic cells. Identified newly tyrosine phosphorylated proteins in differentiating leukemia cells could be important due to their role for normal cellular functions and also due to their drug-targeting potential for leukemia treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bohm SV, Roberts RG (2009) Expression of members of the dystrophin, dystrobrevin, and dystrotelin superfamily. Crit Rev Eukaryot Gene Expr 19(2):89–108

    Article  CAS  Google Scholar 

  • Borutinskaite V, Magnusson KE, Navakauskiene R (2005) Effects of retinoic acid and histone deacetilase inhibitor Bml-210 on protein expression in NB4 cells. Biologija 4:88–93

    Google Scholar 

  • Borutinskaite VV, Magnusson KE, Navakauskiene R (2011) α-Dystrobrevin distribution and association with other proteins in human promyelocytic NB4 cells treated for granulocytic differentiation. Mol Biol Rep 38(5):3001–3011. https://doi.org/10.1007/s11033-010-9965-9

    Article  CAS  Google Scholar 

  • Constantin B (2014) Dystrophin complex functions as a scaffold for signalling proteins. Biochim Biophys Acta Biomembr 1838(2, SI):635–642. https://doi.org/10.1016/j.bbamem.2013.08.023

  • Fuchs O (2010) Transcription factor nf-κb inhibitors as single therapeutic agents or in combination with classical chemotherapeutic agents for the treatment of hematologic malignancies. Curr Mol Pharmacol 3(3):98–122

    Article  CAS  Google Scholar 

  • Grady R, Grange R, Lau K, Maimone M, Nichol M, Stull J, Sanes J (1999) Role for alpha-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies. Nat Cell Biol 1(4):215–220. https://doi.org/10.1038/12034

    Article  CAS  Google Scholar 

  • Kulyte A, Navakauskiene R, Treigyte G, Gineitis A, Magnusson KE (2001) Parallel assessment of tyrosine phosphorylation and nuclear targeting of proteins. Biotechniques 31(3):510+

    Google Scholar 

  • Kulyte A, Navakauskiene R, Treigyte G, Gineitis A, Bergman T, Magnusson KE (2002) Characterization of human alpha-dystrobrevin isoforms in HL-60 human promyelocytic leukemia cells undergoing granulocytic differentiation. Mol Biol Cell 13(12):4195–4205. https://doi.org/10.1091/mbc.E02-03-0128

    Article  CAS  Google Scholar 

  • Navakauskiene R, Savickiene J, Treigyte G (2000) Protein tyrosine phosphorylation modulates apoptosis and differentiation of human promyelocytic leukemia HL-60 cells. Biomedicine 2(1):23–29

    Google Scholar 

  • Navakauskiene R, Treigyte G, Pivoriunas A, Savickiene J (2002) Cell cycle inhibitors in retinoic acid- and etoposide-mediated biological responses. Biologija 2:64–67

    Google Scholar 

  • Navakauskiene R, Kulyte A, Treigyte G, Gineitis A, Magnusson KE (2003a) Translocation of transcription regulators into the nucleus during granulocyte commitment of HL-60 cells. Biochem Cell Biol Rev. Biochim. Biol. Cell. 81(4):285–295. https://doi.org/10.1139/O03-055

    Article  CAS  Google Scholar 

  • Navakauskiene R, Treigyte G, Kulyte A, Magnusson KE (2003b) Proteomic analysis by MALDI-TOf mass spectrometry and its application to HL-60 cells. Biologija 3:63–65

    Google Scholar 

  • Navakauskiene R, Treigyte G, Gineitis A, Magnusson KE (2004a) Identification of apoptotic tyrosine-phosphorylated proteins after etoposide or retinoic acid treatment of HL-60 cells. Proteomics 4(4):1029–1041. https://doi.org/10.1002/pmic.200300671

    Article  CAS  Google Scholar 

  • Navakauskiene R, Treigyte G, Savickiene J, Gineitis A, Magnusson KE (2004b) Alterations in protein expression in HL-60 cells during etoposide-induced apoptosis modulated by the caspase inhibitor ZVAD.fmk. In: Diederich M (ed) Signal Transduction Pathways, Chromatin Structure, and Gene Expression Mechanisms as Therapeutic Targets, Fdn Rech Canc and Sang; Novartis Luxembourg; Q8 Petr, Annals of the New York Academy of Sciences, vol 1030, pp 393–402. https://doi.org/10.1196/annals.1329.0049

  • Navakauskiene R, Treigyte G, Borutinskaite VV, Matuzevicius D, Navakauskas D, Magnusson KE (2012) Alpha-dystrobrevin and its associated proteins in human promyelocytic leukemia cells induced to apoptosis. J Proteomics 75(11):3291–3303. https://doi.org/10.1016/j.jprot.2012.03.041

    Article  CAS  Google Scholar 

  • Nawrotzki R, Loh N, Ruegg M, Davies K, Blake D (1998) Characterisation of alpha-dystrobrevin in muscle. J Cell Sci 111(17):2595–2605

    Article  CAS  Google Scholar 

  • Pinto-Costa R, Sousa MM (2019) Profilin as a dual regulator of actin and microtubule dynamics. Cytoskeleton 77:76–83. https://doi.org/10.1002/cm.21586

    Article  Google Scholar 

  • Sadoulet-Puccio HM, Khurana TS, Cohen JB, Kunkel LM (1996) Cloning and characterization of the human homologue of a dystrophin related phosphoprotein found at the torpedo electric organ post-synaptic membrane. Hum Mol Genet 5(4):489–496

    Article  CAS  Google Scholar 

  • Savickiene J, Borutinskaite VV, Treigyte G, Magnusson KE, Navakauskiene R (2006) The novel histone deacetylase inhibitor BML-210 exerts growth inhibitory, proapoptotic and differentiation stimulating effects on the human leukemia cell lines. Eur J Pharmacol 549(1–3):9–18. https://doi.org/10.1016/j.ejphar.2006.08.010

    Article  CAS  Google Scholar 

  • Savickiene J, Treigyte G, Gineitis A, Navakauskiene R (2010) A critical role of redox state in determining HL-60 cell granulocytic differentiation and apoptosis via involvement of PKC and NF-kappa B. In Vitro Cellular and Developmental Biology-Animal 46(6):547–559. https://doi.org/10.1007/s11626-010-9296-0

    Article  CAS  Google Scholar 

  • Senter L, Ceoldo S, Petrusa MM, Salviati G (1995) Phosphorylation of dystrophin—effects on actin-binding. Biochem Biophys Res Commun 206(1):57–63. https://doi.org/10.1006/bbrc.1995.1009

    Article  CAS  Google Scholar 

  • Shimada A, Murakami Y (2010) Dynamic regulation of heterochromatin function via phosphorylation of HP1-family proteins. Epigenetics 5(1):30–33. https://doi.org/10.4161/epi.5.1.10605

    Article  CAS  Google Scholar 

  • Treigyte G, Navakauskiene R, Kulyte A, Gineitis A, Magnusson KE (2000a) Characteristics of cytosolic proteins and changes in their tyrosine phosphorylation during HL-60 cell differentiation. Biologija 2:32–35

    Google Scholar 

  • Treigyte G, Navakauskiene R, Kulyte A, Gineitis A, Magnusson KE (2000b) Tyrosine phosphorylation of cytoplasmic proteins in proliferating, differentiating, apoptotic HL-60 cells and blood neutrophils. Cell Mol Life Sci 57(13–14):1997–2008. https://doi.org/10.1007/PL00000681

    Article  CAS  Google Scholar 

  • Treigyte G, Navakauskiene R, Kulyte A, Gineitis A, Magnusson KE (2000c) Tyrosine phosphorylation of cytoplasmic proteins in proliferating, differentiating, apoptotic HL-60 cells and blood neutrophils. Cell Mol Life Sci 57(13–14):1997–2008. https://doi.org/10.1007/PL00000681

    Article  CAS  Google Scholar 

  • Treigyte G, Savickiene J, Navakauskiene R (2003) Changes in O- and N- glycosylation of cytoplasmic proteins in proliferating HL-60 cells and in those induced to granulocytic differentiation. Biologija 3:36–38

    Google Scholar 

  • Treigyte G, Savickiene J, Navakauskiene R (2004) Identification of O- and N-glycosylated nuclear proteins of HL-60 cells induced to granulocytic differentiation. Biologija 2:49–51

    Google Scholar 

  • Tsuji Y, Hatanaka M, Maeda T, Seya T, Takenaka H, Shimizu A (2005) Differential-expression and tyrosine-phosphorylation profiles of caveolin isoforms in human T cell leukemia cell lines. Int J Mol Med 16(5):889–893

    CAS  PubMed  Google Scholar 

  • Walter LM, Franz P, Lindner R, Tsiavaliaris G, Hensel N, Claus P (2020) Profilin2a-phosphorylation as a regulatory mechanism for actin dynamics. FASEB J 34(2):2147–2160. https://doi.org/10.1096/fj.201901883R

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Navakauskienė, R., Navakauskas, D., Borutinskaitė, V., Matuzevičius, D. (2021). Protein Phosphorylation in Leukemia. In: Epigenetics and Proteomics of Leukemia. Springer, Cham. https://doi.org/10.1007/978-3-030-68708-3_5

Download citation

Publish with us

Policies and ethics