Skip to main content

Metaheuristics for Order Picking Optimisation: A Comparison Among Three Swarm-Intelligence Algorithms

  • Chapter
  • First Online:
Technological and Industrial Applications Associated With Industry 4.0

Abstract

Nowadays, the Order Picking Problem (OPP) represents the most costly and time-consuming operation of warehouse management, with an average ranging from 50 to 75% of the total warehouse management cost. So, OPP is being analysed to improve logistics operations in companies. The OPP consists of dispatching a set of products, allocated in specific places in a warehouse, based in a group of customer orders. In most traditional warehouses, the optimisation methods of order picking operations are associated with time, whose model is based on the Traveling Salesperson Problem (TSP). The TSP is considered as an NP-Hard problem; thus, the development of metaheuristics approaches is justified. This chapter presents a comparison among three different optimisation metaheuristic approaches that solve the OPP. An analysis is used to evaluate and compare ant colony optimisation, elephant herding optimisation, and the bat algorithm. This study considers the number of picking aisles, the number of extra cross aisles, the number of items in the order, and the standard deviation in both the x and y axis of the product distribution in the warehouse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hadi, M.Z., Djatna, T.: Implementation of an ant colony approach to solve multi-objective order picking problem in beverage warehousing with drive-in rack system. In: International Conference on Advanced Computer Science and Information Systems, pp. 137–142. Balic (2017). https://doi.org/10.1109/icacsis.2017.8355024m

  2. de Koster, R., Le-Duc, T., Jan-Roodbergen, K.: Design and control of warehouse order picking: a literature review. Eur. J. Oper. Res. 182(2), 481–501 (2007). https://doi.org/10.1016/j.ejor.2006.07.009

    Article  MATH  Google Scholar 

  3. Ab-Wahab, M.N., Nefti-Meziani, S., Atyabi, A.: A comprehensive review of swarm optimization algorithms. PLoS ONE 10(5), 1–36 (2015). https://doi.org/10.1371/journal.pone.0122827

    Article  Google Scholar 

  4. Rosenthal, H., Ratliff, D., Arnon, S.: Order-picking in a rectangular warehouse: a solvable case of the traveling salesman problem. Oper. Res. 31(3), 507–521 (1983). https://doi.org/10.1287/opre.31.3.507

    Article  MATH  Google Scholar 

  5. Beroule, B., Grunder, O., Barakat, O., Aujoulat, O.: Order picking problem in a warehouse hospital pharmacy. Sci. Direct IFAC Papers OnLine 50(1), 5017–5022 (2017). https://doi.org/10.1016/j.ifacol.2017.08.910

    Article  Google Scholar 

  6. Ortiz-Zezzatti, A.O., Rivera, G., Gómez-Santillán, C., Sánchez, B.: Handbook of Research on Metaheuristics for Order Picking Optimization in Warehouses to Smart Cities. IGI Global, Hershey (2019). https://doi.org/10.4018/978-1-5225-8131-4

  7. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 26(1), 29–41 (1996). https://doi.org/10.1109/3477.484436

    Article  Google Scholar 

  8. Bastiani, S., Cruz-Reyes, L., Fernandez, E., Gómez, C., Rivera, G.: An ant colony algorithm for solving the selection portfolio problem, using a quality-assessment model for portfolios of projects expressed by a priority ranking. In: Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization, vol. 601, pp. 357–373. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17747-2_28

  9. Gómez, C., Cruz, L., Schaeffer, E., Meza, E., Rivera, G.: Adaptive ant-colony algorithm for semantic query routing. J. Autom. Mob. Robot. Intell. Syst. 5(1), 85–94 (2011)

    Google Scholar 

  10. Rivera, G., Gómez, C.G., Fernández, E.R., Cruz, L., Castillo, O., Bastiani, S.S.: Handling of synergy into an algorithm for project portfolio selection. In: Castillo, O., Melin, P., Kacprzyk, J. (eds). Recent Advances on Hybrid Intelligent Systems, vol. 451, pp. 417–430. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33021-6_33

  11. Gómez, C., Cruz, L., Schaeffer, E., Meza, E., Rivera, G.: Local Survival Rule for Steer an Adaptive Ant-Colony Algorithm in Complex Systems. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Recognition Based on Biometrics, vol. 312, pp. 245–265. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15111-8_15

  12. Fernandez, E., Gomez, C., Rivera, G., Cruz-Reyes, L.: Hybrid metaheuristic approach for handling many objectives and decisions on partial support in project portfolio opti-misation. Inf. Sci. 315, 102–122 (2015). https://doi.org/10.1016/j.ins.2015.03.064

    Article  Google Scholar 

  13. Olmos, J., Florencia, R., López-Ramos, F., Olmos-Sánchez, K.: Improvement of the optimization of an order picking model associated with the components of a classic volkswagen beetle using an ant colony approach. In: Handbook of Research on Metaheuristics for Order Picking Optimization in Warehouses to Smart Cities, pp. 189–210. IGI Global, Hershey (2019). https://doi.org/10.4018/978-1-5225-8131-4.ch010

  14. Gomez, C.G., Cruz-Reyes, L., Rivera, G., Rangel-Valdez, N., Morales-Rodriguez, M.L., Perez-Villafuerte, M.: Interdependent Projects selection with preference incorporation. In: García-Alcaraz, J., Alor-Hernández, G., Maldonado-Macías, A., Sánchez-Ramírez, C. (eds) In New Perspectives on Applied Industrial tools and techniques, pp. 253–271. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-56871-3_13

  15. De Santis, R., Montanari, R., Vignali, G., Bottani, E.: An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual ware-houses. Eur. J. Oper. Res. 267(1), 120–137 (2018). https://doi.org/10.1016/j.ejor.2017.11.017

    Article  MATH  Google Scholar 

  16. Cruz, L., Fernandez, E., Gomez, C., Rivera, G., Perez, F.: Many-objective portfolio optimization of interdependent projects with ‘a priori’ incorporation of decision-maker preferences. Appl. Math. Inf. Sci. 8(4), 1517–1531 (2014). https://doi.org/10.12785/amis/080405

    Article  Google Scholar 

  17. Nemhauger, M., Bellmore, G.: The traveling salesman problem: a survey. Oper. Res. 16(3), 538–558 (1968). https://doi.org/10.1287/opre.16.3.538

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, G.-G., Deb, S., Coelho, L.D.S.: Elephant herding optimization. In: International Symposium on Computational and Business Intelligence, pp. 1–5. Bali (2015). https://doi.org/10.1109/iscbi.2015.8

  19. Alihodzic, A., Tuba, E., Capor-Hrosik, R., Dolicanin, E., Tuba, M.: Unmanned aerial vehicle path planning problem by adjusted elephant herding optimization. In: 25th Telecommunication Forum (TELFOR), pp. 1–4. Belgrade (2017). https://doi.org/10.1109/telfor.2017.8249468

  20. Bukhsh, R., Javaid, N., Iqbal, Z., Ahmed, U., Ahmad, Z., Nadeem-Iqbal, M.: Appliances scheduling using hybrid scheme of genetic algorithm and elephant herd optimization for residential demand response. In: International Conference on Advanced Information Networking and Applications Workshops, pp. 210–217. Cracow (2018). https://doi.org/10.1109/waina.2018.00089

  21. Tuba, E., Alihodzic, A., Tuba, M.: Multilevel image thresholding using elephant herding optimization algorithm. In: International Conference on Engineering of Modern Electric Systems, pp. 240–243. Oradea (2017). https://doi.org/10.1109/emes.2017.7980424

  22. Tuba, E., Capor-Hrosik, R., Alihodzic, A., Javanovic, R., Tuba, M.: Chaotic elephant herding optimization algorithm. In: World Symposium on Applied Machine Intelligence and Informatics, pp. 000213–000216. Košice (2018). https://doi.org/10.1109/sami.2018.8324842

  23. Jimenez, R., Florencia, R., García, V., Lopez, A.: Use of elephant search algorithm to solve an order picking problem in a mobile atelier. In: Handbook of Research on Metaheuristics for Order Picking Optimization in Warehouses to Smart Cities, pp. 161–172. IGI Global, Hershey (2019). https://doi.org/10.4018/978-1-5225-8131-4.ch008

  24. Wang, G.-G., Deb, S., Coelho, L., Gao, X.-Z.: A new metaheuristic optimisation algorithm motivated by elephant herding behaviour. Int. J. Bio-Inspired Comput. 8(6), 394–408 (2016). https://doi.org/10.1504/IJBIC.2016.10002274

    Article  Google Scholar 

  25. Bentouati, B., Chettih, S., El-Sehiemy, R., Wang, G.-G.: Elephant herding optimization for solving non-convex optimal power flow problem. J. Electr. Electron. Eng. 10(1), 31–36 (2017)

    Google Scholar 

  26. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds) In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Studies in Computational Intelligence, vol 284. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12538-6_6

  27. Florencia, R., Sanchez-Solis, J., Carvajal, I., Garcia, V.: Design of an Order Picking Reduce Module Using Bat Algorithm. In Handbook of Research on Metaheuristics for Order Picking Optimization in Warehouses to Smart Cities, pp. 211–225. IGI Global, Hershey (2019). https://doi.org/10.4018/978-1-5225-8131-4.ch011

  28. Arbex-Valle, C., Beasley, J.E., da Cunha, A.S.: Modelling and solving the joint order batching and picker routing problem in inventories. In: Cerulli, R., Fujishige, S., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2016. Lecture Notes in Computer Science, vol 9849. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45587-7_8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto Rivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olmos, J., Florencia, R., García, V., González, M.V., Rivera, G., Sánchez-Solís, P. (2022). Metaheuristics for Order Picking Optimisation: A Comparison Among Three Swarm-Intelligence Algorithms. In: Ochoa-Zezzatti, A., Oliva, D., Hassanien, A.E. (eds) Technological and Industrial Applications Associated With Industry 4.0 . Studies in Systems, Decision and Control, vol 347 . Springer, Cham. https://doi.org/10.1007/978-3-030-68663-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68663-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68662-8

  • Online ISBN: 978-3-030-68663-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics