Abstract
Nowadays, the Order Picking Problem (OPP) represents the most costly and time-consuming operation of warehouse management, with an average ranging from 50 to 75% of the total warehouse management cost. So, OPP is being analysed to improve logistics operations in companies. The OPP consists of dispatching a set of products, allocated in specific places in a warehouse, based in a group of customer orders. In most traditional warehouses, the optimisation methods of order picking operations are associated with time, whose model is based on the Traveling Salesperson Problem (TSP). The TSP is considered as an NP-Hard problem; thus, the development of metaheuristics approaches is justified. This chapter presents a comparison among three different optimisation metaheuristic approaches that solve the OPP. An analysis is used to evaluate and compare ant colony optimisation, elephant herding optimisation, and the bat algorithm. This study considers the number of picking aisles, the number of extra cross aisles, the number of items in the order, and the standard deviation in both the x and y axis of the product distribution in the warehouse.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hadi, M.Z., Djatna, T.: Implementation of an ant colony approach to solve multi-objective order picking problem in beverage warehousing with drive-in rack system. In: International Conference on Advanced Computer Science and Information Systems, pp. 137–142. Balic (2017). https://doi.org/10.1109/icacsis.2017.8355024m
de Koster, R., Le-Duc, T., Jan-Roodbergen, K.: Design and control of warehouse order picking: a literature review. Eur. J. Oper. Res. 182(2), 481–501 (2007). https://doi.org/10.1016/j.ejor.2006.07.009
Ab-Wahab, M.N., Nefti-Meziani, S., Atyabi, A.: A comprehensive review of swarm optimization algorithms. PLoS ONE 10(5), 1–36 (2015). https://doi.org/10.1371/journal.pone.0122827
Rosenthal, H., Ratliff, D., Arnon, S.: Order-picking in a rectangular warehouse: a solvable case of the traveling salesman problem. Oper. Res. 31(3), 507–521 (1983). https://doi.org/10.1287/opre.31.3.507
Beroule, B., Grunder, O., Barakat, O., Aujoulat, O.: Order picking problem in a warehouse hospital pharmacy. Sci. Direct IFAC Papers OnLine 50(1), 5017–5022 (2017). https://doi.org/10.1016/j.ifacol.2017.08.910
Ortiz-Zezzatti, A.O., Rivera, G., Gómez-Santillán, C., Sánchez, B.: Handbook of Research on Metaheuristics for Order Picking Optimization in Warehouses to Smart Cities. IGI Global, Hershey (2019). https://doi.org/10.4018/978-1-5225-8131-4
Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 26(1), 29–41 (1996). https://doi.org/10.1109/3477.484436
Bastiani, S., Cruz-Reyes, L., Fernandez, E., Gómez, C., Rivera, G.: An ant colony algorithm for solving the selection portfolio problem, using a quality-assessment model for portfolios of projects expressed by a priority ranking. In: Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization, vol. 601, pp. 357–373. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17747-2_28
Gómez, C., Cruz, L., Schaeffer, E., Meza, E., Rivera, G.: Adaptive ant-colony algorithm for semantic query routing. J. Autom. Mob. Robot. Intell. Syst. 5(1), 85–94 (2011)
Rivera, G., Gómez, C.G., Fernández, E.R., Cruz, L., Castillo, O., Bastiani, S.S.: Handling of synergy into an algorithm for project portfolio selection. In: Castillo, O., Melin, P., Kacprzyk, J. (eds). Recent Advances on Hybrid Intelligent Systems, vol. 451, pp. 417–430. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33021-6_33
Gómez, C., Cruz, L., Schaeffer, E., Meza, E., Rivera, G.: Local Survival Rule for Steer an Adaptive Ant-Colony Algorithm in Complex Systems. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Recognition Based on Biometrics, vol. 312, pp. 245–265. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15111-8_15
Fernandez, E., Gomez, C., Rivera, G., Cruz-Reyes, L.: Hybrid metaheuristic approach for handling many objectives and decisions on partial support in project portfolio opti-misation. Inf. Sci. 315, 102–122 (2015). https://doi.org/10.1016/j.ins.2015.03.064
Olmos, J., Florencia, R., López-Ramos, F., Olmos-Sánchez, K.: Improvement of the optimization of an order picking model associated with the components of a classic volkswagen beetle using an ant colony approach. In: Handbook of Research on Metaheuristics for Order Picking Optimization in Warehouses to Smart Cities, pp. 189–210. IGI Global, Hershey (2019). https://doi.org/10.4018/978-1-5225-8131-4.ch010
Gomez, C.G., Cruz-Reyes, L., Rivera, G., Rangel-Valdez, N., Morales-Rodriguez, M.L., Perez-Villafuerte, M.: Interdependent Projects selection with preference incorporation. In: García-Alcaraz, J., Alor-Hernández, G., Maldonado-Macías, A., Sánchez-Ramírez, C. (eds) In New Perspectives on Applied Industrial tools and techniques, pp. 253–271. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-56871-3_13
De Santis, R., Montanari, R., Vignali, G., Bottani, E.: An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual ware-houses. Eur. J. Oper. Res. 267(1), 120–137 (2018). https://doi.org/10.1016/j.ejor.2017.11.017
Cruz, L., Fernandez, E., Gomez, C., Rivera, G., Perez, F.: Many-objective portfolio optimization of interdependent projects with ‘a priori’ incorporation of decision-maker preferences. Appl. Math. Inf. Sci. 8(4), 1517–1531 (2014). https://doi.org/10.12785/amis/080405
Nemhauger, M., Bellmore, G.: The traveling salesman problem: a survey. Oper. Res. 16(3), 538–558 (1968). https://doi.org/10.1287/opre.16.3.538
Wang, G.-G., Deb, S., Coelho, L.D.S.: Elephant herding optimization. In: International Symposium on Computational and Business Intelligence, pp. 1–5. Bali (2015). https://doi.org/10.1109/iscbi.2015.8
Alihodzic, A., Tuba, E., Capor-Hrosik, R., Dolicanin, E., Tuba, M.: Unmanned aerial vehicle path planning problem by adjusted elephant herding optimization. In: 25th Telecommunication Forum (TELFOR), pp. 1–4. Belgrade (2017). https://doi.org/10.1109/telfor.2017.8249468
Bukhsh, R., Javaid, N., Iqbal, Z., Ahmed, U., Ahmad, Z., Nadeem-Iqbal, M.: Appliances scheduling using hybrid scheme of genetic algorithm and elephant herd optimization for residential demand response. In: International Conference on Advanced Information Networking and Applications Workshops, pp. 210–217. Cracow (2018). https://doi.org/10.1109/waina.2018.00089
Tuba, E., Alihodzic, A., Tuba, M.: Multilevel image thresholding using elephant herding optimization algorithm. In: International Conference on Engineering of Modern Electric Systems, pp. 240–243. Oradea (2017). https://doi.org/10.1109/emes.2017.7980424
Tuba, E., Capor-Hrosik, R., Alihodzic, A., Javanovic, R., Tuba, M.: Chaotic elephant herding optimization algorithm. In: World Symposium on Applied Machine Intelligence and Informatics, pp. 000213–000216. Košice (2018). https://doi.org/10.1109/sami.2018.8324842
Jimenez, R., Florencia, R., García, V., Lopez, A.: Use of elephant search algorithm to solve an order picking problem in a mobile atelier. In: Handbook of Research on Metaheuristics for Order Picking Optimization in Warehouses to Smart Cities, pp. 161–172. IGI Global, Hershey (2019). https://doi.org/10.4018/978-1-5225-8131-4.ch008
Wang, G.-G., Deb, S., Coelho, L., Gao, X.-Z.: A new metaheuristic optimisation algorithm motivated by elephant herding behaviour. Int. J. Bio-Inspired Comput. 8(6), 394–408 (2016). https://doi.org/10.1504/IJBIC.2016.10002274
Bentouati, B., Chettih, S., El-Sehiemy, R., Wang, G.-G.: Elephant herding optimization for solving non-convex optimal power flow problem. J. Electr. Electron. Eng. 10(1), 31–36 (2017)
Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds) In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Studies in Computational Intelligence, vol 284. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12538-6_6
Florencia, R., Sanchez-Solis, J., Carvajal, I., Garcia, V.: Design of an Order Picking Reduce Module Using Bat Algorithm. In Handbook of Research on Metaheuristics for Order Picking Optimization in Warehouses to Smart Cities, pp. 211–225. IGI Global, Hershey (2019). https://doi.org/10.4018/978-1-5225-8131-4.ch011
Arbex-Valle, C., Beasley, J.E., da Cunha, A.S.: Modelling and solving the joint order batching and picker routing problem in inventories. In: Cerulli, R., Fujishige, S., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2016. Lecture Notes in Computer Science, vol 9849. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45587-7_8
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Olmos, J., Florencia, R., García, V., González, M.V., Rivera, G., Sánchez-Solís, P. (2022). Metaheuristics for Order Picking Optimisation: A Comparison Among Three Swarm-Intelligence Algorithms. In: Ochoa-Zezzatti, A., Oliva, D., Hassanien, A.E. (eds) Technological and Industrial Applications Associated With Industry 4.0 . Studies in Systems, Decision and Control, vol 347 . Springer, Cham. https://doi.org/10.1007/978-3-030-68663-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-68663-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68662-8
Online ISBN: 978-3-030-68663-5
eBook Packages: EngineeringEngineering (R0)