Skip to main content

Paper-Based Kits for Food Analysis and Authentication

  • Chapter
  • First Online:
Techniques to Measure Food Safety and Quality

Abstract

Food safety and security have emerged as an issue of global public concern and trade implications. Food contamination and adulteration are major threats toward public health. Traditional and conventional benchtop technologies are being utilized all over the world for the identification and quantification of food contaminants and adulterants. But these technologies are expensive, labor-intensive, require highly skilled manpower, and resources for proper operation. There is an urgent need for developing point-of-care devices for food analysis and authentication, which can be cost-effective, reliable, simple to operate, and analyze. Bioactive paper is a promising tool that can be used over a wide range of applications involving food safety and security. Paper-based devices are typically rapid, cost-effective, and user-friendly, offering a high potential for rapid food safety analysis at point of need. In recent years, bioactive paper research has been a topic of great interest, as it is robust, simple, and affordable, and it can be an alternative to the traditional expensive instruments for detections, such as gas chromatography, mass spectroscopy, or high-performance liquid chromatography. This article focuses on paper-based point-of-care (POC) devices that are being developed for food analysis and authentication. It discusses paper-based devices as developed for the detection of foodborne and waterborne pathogens, organic and inorganic toxins, pesticides, and illegal food additives. Finally, this study also sheds light on the future aspect of bioactive papers in the food industry, limitations, and way forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danezis, G. P., Tsagkaris, A. S., Camin, F., Brusic, V., & Georgiou, C. A. (2016). Food authentication: Techniques, trends & emerging approaches. TrAC Trends in Analytical Chemistry, 85, 123–132.

    Article  CAS  Google Scholar 

  2. Organization, W.H. (2020). Retrieved from https://www.who.int/news-room/fact-sheets/detail/food-safety.

  3. Janakiraman, V. (2008). Listeriosis in pregnancy: Diagnosis, treatment, and prevention. Reviews in Obstetrics & Gynecology, 1(4), 179–185.

    Google Scholar 

  4. Law, J. W.-F., Mutalib, N.-S. A., Chan, K.-G., & Lee, L.-H. (2015). Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Frontiers in Microbiology, 5, 770.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lawless, H. T., & Klein, B. P. (1989). Academy vs. industrial perspectives on sensory evaluation. Journal of Sensory Studies, 3(3), 205–216.

    Article  Google Scholar 

  6. Choi, J. R., Yong, K. W., Choi, J. Y., & Cowie, A. C. (2019). Emerging point-of-care technologies for food safety analysis. Sensors, 19(4), 817.

    Article  PubMed Central  Google Scholar 

  7. Urdea, M., Penny, L. A., Olmsted, S. S., Giovanni, M. Y., Kaspar, P., Shepherd, A., et al. (2006). Requirements for high impact diagnostics in the developing world. Nature, 444(1s), 73.

    Article  PubMed  Google Scholar 

  8. Choi, J. R., Yong, K. W., Choi, J. Y., Nilghaz, A., Lin, Y., Xu, J., et al. (2017). Advances and challenges of fully integrated paper-based point-of-care nucleic acid testing. TrAC Trends in Analytical Chemistry, 93, 37–50.

    Article  CAS  Google Scholar 

  9. Khan, M. S., Garnier, G., & Shen, W. (2010). Printing, specificity and stability of bioactive papers. Saarbrucken, Germany: VDM Publishing House.

    Google Scholar 

  10. Khan, M. S., Tian, J., Li, X., Shen, W., & Garnier, G. (2009). Bioactive enzymatic papers. In Advances in pulp and paper research (pp. 1149–1166). Oxford: The Pulp & Paper Fundamental Research Society.

    Google Scholar 

  11. Cate, D. M., Adkins, J. A., Mettakoonpitak, J., & Henry, C. S. (2014). Recent developments in paper-based microfluidic devices. Analytical Chemistry, 87(1), 19–41.

    Article  PubMed  Google Scholar 

  12. Hu, J., Yew, C.-H. T., Chen, X., Feng, S., Yang, Q., Wang, S., et al. (2017). Based capacitive sensors for identification and quantification of chemicals at the point of care. Talanta, 165, 419–428.

    Article  CAS  PubMed  Google Scholar 

  13. Khan, M. S., Nabil, S. K., Al Mahbub, H., & Khandaker, M. M. R. (2020). Bioactive papers: A futuristic tool for health, food, and environmental applications. In M. M. Islam & M. M. Hossain (Eds.), Science and technology innovation for a sustainable economy (pp. 155–177). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  14. Bülbül, G., Hayat, A., & Andreescu, S. (2015). Portable nanoparticle-based sensors for food safety assessment. Sensors, 15(12), 30736–30758.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Weng, X., & Neethirajan, S. (2017). Ensuring food safety: Quality monitoring using microfluidics. Trends in Food Science & Technology, 65, 10–22.

    Article  CAS  Google Scholar 

  16. Hameed, S., Xie, L., & Ying, Y. (2018). Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends in Food Science & Technology, 81, 61–73.

    Article  CAS  Google Scholar 

  17. Ito, K., Yamamoto, T., Oyama, Y., Tsuruma, R., Saito, E., Saito, Y., et al. (2016). Food allergen analysis for processed food using a novel extraction method to eliminate harmful reagents for both ELISA and lateral-flow tests. Analytical and Bioanalytical Chemistry, 408(22), 5973–5984.

    Article  CAS  PubMed  Google Scholar 

  18. Bavisetty, S. C. B., Kim, V. H. T., Soottawat, B., & Kitiya, V. (2018). Rapid pathogen detection tools in seafood safety. Current Opinion in Food Science, 20, 92–99.

    Article  Google Scholar 

  19. Tang, R. H., Yang, H., Choi, J. R., Gong, Y., Feng, S. S., Pingguan-Murphy, B., et al. (2017). Advances in paper-based sample pretreatment for point-of-care testing. Critical Reviews in Biotechnology, 37(4), 411–428.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, B., Lin, Z., & Wang, M. (2015). Fabrication of a paper-based microfluidic device to readily determine nitrite ion concentration by simple colorimetric assay. Journal of Chemical Education, 92(4), 733–736.

    Article  CAS  Google Scholar 

  21. Song, S., Liu, N., Zhao, Z., Ediage, E. N., Wu, S., Sun, C., et al. (2014). Multiplex lateral flow immunoassay for mycotoxin determination. Analytical Chemistry, 86(10), 4995–5001.

    Article  CAS  PubMed  Google Scholar 

  22. Park, J., Shin, J. H., & Park, J.-K. (2016). Pressed paper-based dipstick for detection of foodborne pathogens with multistep reactions. Analytical Chemistry, 88(7), 3781–3788.

    Article  CAS  PubMed  Google Scholar 

  23. Li, B., Zhang, Z., Qi, J., Zhou, N., Qin, S., Choo, J., et al. (2017). Quantum dot-based molecularly imprinted polymers on three-dimensional origami paper microfluidic chip for fluorescence detection of phycocyanin. ACS Sensors, 2(2), 243–250.

    Article  CAS  PubMed  Google Scholar 

  24. Lawrence, C. S. K., Tan, S. N., & Floresca, C. Z. (2014). A “green” cellulose paper based glucose amperometric biosensor. Sensors and Actuators B: Chemical, 193, 536–541.

    Article  Google Scholar 

  25. Jiang, Y., Zou, S., & Cao, X. (2016). Rapid and ultra-sensitive detection of foodborne pathogens by using miniaturized microfluidic devices: A review. Analytical Methods, 8(37), 6668–6681.

    Article  Google Scholar 

  26. Sun, L., Jiang, Y., Pan, R., Li, M., Wang, R., Chen, S., et al. (2018). A novel, simple and low-cost paper-based analytical device for colorimetric detection of Cronobacter spp. Analytica Chimica Acta, 1036, 80–88.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, Y., Wang, H., Zhang, P., Sun, C., Wang, X., Wang, X., et al. (2016). Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay. Scientific Reports, 6(1), 21342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yonekita, T., Ohtsuki, R., Hojo, E., Morishita, N., Matsumoto, T., Aizawa, T., et al. (2013). Development of a novel multiplex lateral flow assay using an antimicrobial peptide for the detection of Shiga toxin-producing Escherichia coli. Journal of Microbiological Methods, 93(3), 251–256.

    Article  CAS  PubMed  Google Scholar 

  29. Noguera, P., Posthuma-Trumpie, G. A., van Tuil, M., van der Wal, F. J., de Boer, A., Moers, A. P. H. A., et al. (2011). Carbon nanoparticles in lateral flow methods to detect genes encoding virulence factors of Shiga toxin-producing Escherichia coli. Analytical and Bioanalytical Chemistry, 399(2), 831–838.

    Article  CAS  PubMed  Google Scholar 

  30. San Park, T., Li, W., McCracken, K. E., & Yoon, J.-Y. (2013). Smartphone quantifies salmonella from paper microfluidics. Lab on a Chip, 13(24), 4832–4840.

    Article  Google Scholar 

  31. Jokerst, J. C., Adkins, J. A., Bisha, B., Mentele, M. M., Goodridge, L. D., & Henry, C. S. (2012). Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Analytical Chemistry, 84(6), 2900–2907.

    Article  CAS  PubMed  Google Scholar 

  32. Busa, L. S. A., Mohammadi, S., Maeki, M., Ishida, A., Tani, H., & Tokeshi, M. (2016). Advances in microfluidic paper-based analytical devices for food and water analysis. Micromachines, 7(5), 86.

    Article  PubMed Central  Google Scholar 

  33. Chen, Y., Cheng, N., Xu, Y., Huang, K., Luo, Y., & Xu, W. (2016). Point-of-care and visual detection of P. aeruginosa and its toxin genes by multiple LAMP and lateral flow nucleic acid biosensor. Biosensors and Bioelectronics, 81, 317–323.

    Article  CAS  PubMed  Google Scholar 

  34. Wu, W., Zhao, S., Mao, Y., Fang, Z., Lu, X., & Zeng, L. (2015). A sensitive lateral flow biosensor for Escherichia coli O157: H7 detection based on aptamer mediated strand displacement amplification. Analytica Chimica Acta, 861, 62–68.

    Article  CAS  PubMed  Google Scholar 

  35. Connelly, J. T., Rolland, J. P., & Whitesides, G. M. (2015). “Paper machine” for molecular diagnostics. Analytical Chemistry, 87(15), 7595–7601.

    Article  CAS  PubMed  Google Scholar 

  36. Choi, J. R., Hu, J., Tang, R., Gong, Y., Feng, S., Ren, H., et al. (2016). An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care. Lab on a Chip, 16(3), 611–621.

    Article  CAS  PubMed  Google Scholar 

  37. Xing, K.-Y., Peng, J., Liu, D.-F., Hu, L.-M., Wang, C., Li, G.-Q., et al. (2018). Novel immunochromatographic assay based on Eu (III)-doped polystyrene nanoparticle-linker-monoclonal antibody for sensitive detection of Escherichia coli O157: H7. Analytica Chimica Acta, 998, 52–59.

    Article  CAS  PubMed  Google Scholar 

  38. Morales-Narváez, E., Naghdi, T., Zor, E., & Merkoçi, A. (2015). Photoluminescent lateral-flow immunoassay revealed by graphene oxide: Highly sensitive paper-based pathogen detection. Analytical Chemistry, 87(16), 8573–8577.

    Article  PubMed  Google Scholar 

  39. Rengaraj, S., Cruz-Izquierdo, Á., Scott, J. L., & Lorenzoa, M. D. (2018). Impedimetric paper-based biosensor for the detection of bacterial contamination in water. Sensors and Actuators B: Chemical, 265, 50–58.

    Article  CAS  Google Scholar 

  40. Zuo, P., Li, X. J., Dominguez, D. C., & Ye, B.-C. (2013). A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Lab on a Chip, 13(19), 3921–3928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Burnham, S., Hu, J., Anany, H., Brovko, L., Deiss, F., Derda, R., et al. (2014). Towards rapid on-site phage-mediated detection of generic Escherichia coli in water using luminescent and visual readout. Analytical and Bioanalytical Chemistry, 406(23), 5685–5693.

    Article  CAS  PubMed  Google Scholar 

  42. Ma, S., Tang, Y., Liu, J., & Wu, J. (2014). Visible paper chip immunoassay for rapid determination of bacteria in water distribution system. Talanta, 120, 135–140.

    Article  CAS  PubMed  Google Scholar 

  43. Fronczek, C. F., Park, T. S., Harshman, D. K., Nicolini, A. M., & Yoon, J.-Y. (2014). Paper microfluidic extraction and direct smartphone-based identification of pathogenic nucleic acids from field and clinical samples. RSC Advances, 4(22), 11103–11110.

    Article  CAS  Google Scholar 

  44. Tang, R., Yang, H., Gong, Y., You, M. L., Liu, Z., Choi, J. R., et al. (2017). A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection. Lab on a Chip, 17(7), 1270–1279.

    Article  CAS  PubMed  Google Scholar 

  45. Jin, S.-Q., Guo, S.-M., Zuo, P., & Ye, B.-C. (2015). A cost-effective Z-folding controlled liquid handling microfluidic paper analysis device for pathogen detection via ATP quantification. Biosensors and Bioelectronics, 63, 379–383.

    Article  CAS  PubMed  Google Scholar 

  46. Yu, C. Y., Ang, G. Y., Chua, A. L., Tan, E. H., Lee, S. Y., Falero-Diaz, G., et al. (2011). Dry-reagent gold nanoparticle-based lateral flow biosensor for the simultaneous detection of Vibrio cholerae serogroups O1 and O139. Journal of Microbiological Methods, 86(3), 277–282.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, X.-X., Song, Y.-Z., Fang, F., & Wu, Z.-Y. (2018). Sensitive paper-based analytical device for fast colorimetric detection of nitrite with smartphone. Analytical and Bioanalytical Chemistry, 410(11), 2665–2669.

    Article  CAS  PubMed  Google Scholar 

  48. He, Q., Ma, C., Hu, X., & Chen, H. (2013). Method for fabrication of paper-based microfluidic devices by alkylsilane self-assembling and UV/O3-patterning. Analytical Chemistry, 85(3), 1327–1331.

    Article  CAS  PubMed  Google Scholar 

  49. Cardoso, T. M., Garcia, P. T., & Coltro, W. K. (2015). Colorimetric determination of nitrite in clinical, food and environmental samples using microfluidic devices stamped in paper platforms. Analytical Methods, 7(17), 7311–7317.

    Article  CAS  Google Scholar 

  50. Ma, L., Nilghaz, A., Choi, J. R., Liu, X., & Lu, X. (2018). Rapid detection of clenbuterol in milk using microfluidic paper-based ELISA. Food Chemistry, 246, 437–441.

    Article  CAS  PubMed  Google Scholar 

  51. Myers, N. M., Kernisan, E. N., & Lieberman, M. (2015). Lab on paper: Iodometric titration on a printed card. Analytical Chemistry, 87(7), 3764–3770.

    Article  CAS  PubMed  Google Scholar 

  52. Liu, C.-C., Wang, Y.-N., Fu, L.-M., & Chen, K.-L. (2018). Microfluidic paper-based chip platform for benzoic acid detection in food. Food Chemistry, 249, 162–167.

    Article  CAS  PubMed  Google Scholar 

  53. Chaiyo, S., Siangproh, W., Apilux, A., & Chailapakul, O. (2015). Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions. Analytica Chimica Acta, 866, 75–83.

    Article  CAS  PubMed  Google Scholar 

  54. Zhu, Y., Zhang, L., & Yang, L. (2015). Designing of the functional paper-based surface-enhanced Raman spectroscopy substrates for colorants detection. Materials Research Bulletin, 63, 199–204.

    Article  Google Scholar 

  55. Yu, L., Shi, Z. Z., Fang, C., Zhang, Y. Y., Liu, Y. S., & Li, C. M. (2015). Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk. Biosensors and Bioelectronics, 69, 307–315.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, Y., Zuo, P., & Ye, B.-C. (2015). A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food. Biosensors and Bioelectronics, 68, 14–19.

    Article  CAS  PubMed  Google Scholar 

  57. Cinti, S., Basso, M., Moscone, D., & Arduini, F. (2017). A paper-based nanomodified electrochemical biosensor for ethanol detection in beers. Analytica Chimica Acta, 960, 123–130.

    Article  CAS  PubMed  Google Scholar 

  58. Chaiyo, S., Apiluk, A., Siangproh, W., & Chailapakul, O. (2016). High sensitivity and specificity simultaneous determination of lead, cadmium and copper using μPAD with dual electrochemical and colorimetric detection. Sensors and Actuators B: Chemical, 233, 540–549.

    Article  CAS  Google Scholar 

  59. Nie, Z.N., C.A.; Gong, J.; Chen, X.; Kumachev, A.; Martinez, A.W.; Narovlyansky, M.; Whitesides, G.M., Electrochemical sensing in paper-based microfluidic devices. . 2010. Lab Chip (10): p. 477–483.

    Google Scholar 

  60. Shi, J. T., Tang, F., Xing, H., Zheng, H., Lianhua, B., & Wei, W. (2012). Electrochemical detection of Pb and Cd in paper-based microfluidic devices. Journal of the Brazilian Chemical Society, 23, 1124–1130.

    Article  CAS  Google Scholar 

  61. Jayawardane, B. M., Cattrall, R. W., & Spas, D. K. (2013). The use of a polymer inclusion membrane in a paper-based sensor for the selective determination of Cu (II). Analytica Chimica Acta, 803, 106–112.

    Article  CAS  PubMed  Google Scholar 

  62. Hossain, S. Z., & Brennan, J. D. (2011). β-Galactosidase-based colorimetric paper sensor for determination of heavy metals. Analytical Chemistry, 83(22), 8772–8778.

    Article  CAS  PubMed  Google Scholar 

  63. Alkasir, R. S., Ornatska, M., & Andreescu, S. (2012). Colorimetric paper bioassay for the detection of phenolic compounds. Analytical Chemistry, 84(22), 9729–9737.

    Article  CAS  PubMed  Google Scholar 

  64. Cuartero, M., Crespo, G. N. A., & Bakker, E. (2015). Based thin-layer coulometric sensor for halide determination. Analytical Chemistry, 87(3), 1981–1990.

    Article  CAS  PubMed  Google Scholar 

  65. Hua, M. Z., Li, S., Wang, S., & Lu, X. (2018). Detecting chemical hazards in foods using microfluidic paper-based analytical devices (μPADs): The real-world application. Micromachines, 9(1), 32.

    Article  PubMed Central  Google Scholar 

  66. Hossain, S. Z., Luckham, R. E., McFadden, M. J., & Brennan, J. D. (2009). Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Analytical Chemistry, 81(21), 9055–9064.

    Article  CAS  PubMed  Google Scholar 

  67. Apilux, A., Isarankura-Na-Ayudhya, C., Tantimongcolwat, T., & Prachayasittikul, V. (2015). based acetylcholinesterase inhibition assay combining a wet system for organophosphate and carbamate pesticides detection. EXCLI Journal, 14, 307.

    PubMed  PubMed Central  Google Scholar 

  68. Badawy, M. E., & El-Aswad, A. F. (2014). Bioactive paper sensor based on the acetylcholinesterase for the rapid detection of organophosphate and carbamate pesticides. International Journal of Analytical Chemistry, 2014, 536823.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sicard, C., Glen, C., Aubie, B., Wallace, D., Jahanshahi-Anbuhi, S., Pennings, K., et al. (2015). Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Research, 70, 360–369.

    Article  CAS  PubMed  Google Scholar 

  70. Nouanthavong, S., Nacapricha, D., Henryd, C. S., & Sameenoi, Y. (2016). Pesticide analysis using nanoceria-coated paper-based devices as a detection platform. Analyst, 141(5), 1837–1846.

    Article  CAS  PubMed  Google Scholar 

  71. Guyton, K. Z., Loomis, D., Grosse, Y., El Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L., et al. (2016). Carcinogenicity of pentachlorophenol and some related compounds. The Lancet Oncology, 17(12), 1637.

    Article  CAS  PubMed  Google Scholar 

  72. Sun, G., Wang, P., Ge, S., Ge, L., Yu, J., & Yan, M. (2014). Photoelectrochemical sensor for pentachlorophenol on microfluidic paper-based analytical device based on the molecular imprinting technique. Biosensors and Bioelectronics, 56, 97–103.

    Article  CAS  PubMed  Google Scholar 

  73. Wang, L., Cai, J., Wang, Y., Fang, Q., Wang, S., Cheng, Q., et al. (2014). A bare-eye-based lateral flow immunoassay based on the use of gold nanoparticles for simultaneous detection of three pesticides. Microchimica Acta, 181(13–14), 1565–1572.

    Article  CAS  Google Scholar 

  74. Mei, Q., Jing, H., Li, Y., Yisibashaer, W., Chen, J., Li, B. N., et al. (2016). Smartphone based visual and quantitative assays on upconversional paper sensor. Biosensors and Bioelectronics, 75, 427–432.

    Article  CAS  PubMed  Google Scholar 

  75. Ma, Y., Wang, Y., Luo, Y., Duan, H., Li, D., Xu, H., et al. (2018). Rapid and sensitive on-site detection of pesticide residues in fruits and vegetables using screen-printed paper-based SERS swabs. Analytical Methods, 10(38), 4655–4664.

    Article  CAS  Google Scholar 

  76. Lee, M., Oh, K., Choi, H.-K., Lee, S. G., Youn, H. J., Lee, H. L., et al. (2018). Subnanomolar sensitivity of filter paper-based SERS sensor for pesticide detection by hydrophobicity change of paper surface. ACS Sensors, 3(1), 151–159.

    Article  CAS  PubMed  Google Scholar 

  77. Li, X., Li, P., Zhang, Q., Li, R., Zhang, W., Zhang, Z., et al. (2013). Multi-component immunochromatographic assay for simultaneous detection of aflatoxin B1, ochratoxin A and zearalenone in agro-food. Biosensors and Bioelectronics, 49, 426–432.

    Article  CAS  PubMed  Google Scholar 

  78. Kim, K. Y., Shim, W.-B., Kim, J.-S., & Chung, D.-H. (2014). Development of a simultaneous lateral flow strip test for the rapid and simple detection of deoxynivalenol and zearalenone. Journal of Food Science, 79(10), M2048–M2055.

    Article  CAS  PubMed  Google Scholar 

  79. Huang, Z.-B., Xu, Y., Li, L.-S., Li, Y.-P., Zhang, H., & He, Q.-H. (2012). Development of an immunochromatographic strip test for the rapid simultaneous detection of deoxynivalenol and zearalenone in wheat and maize. Food Control, 28(1), 7–12.

    Article  CAS  Google Scholar 

  80. Wang, Y.-K., Shi, Y.-B., Zou, Q., Sun, J.-H., Chen, Z.-F., Wang, H.-a., et al. (2013). Development of a rapid and simultaneous immunochromatographic assay for the determination of zearalenone and fumonisin B1 in corn, wheat and feedstuff samples. Food Control, 31(1), 180–188.

    Article  CAS  Google Scholar 

  81. Lattanzio, V. M., Nivarlet, N., Lippolis, V., Gatta, S. D., Huet, A.-C., Delahaut, P., et al. (2012). Multiplex dipstick immunoassay for semi-quantitative determination of fusarium mycotoxins in cereals. Analytica Chimica Acta, 718, 99–108.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, D., Li, P., Liu, W., Zhao, L., Zhang, Q., Zhang, W., et al. (2013). Development of a detector-free semiquantitative immunochromatographic assay with major aflatoxins as target analytes. Sensors and Actuators B: Chemical, 185, 432–437.

    Article  CAS  Google Scholar 

  83. Duffy, D. C., McDonald, J. C., Schueller, O. J. A., & Whitesides, G. M. (1998). Rapid prototyping of microfluidic Systems in Poly(dimethylsiloxane). Analytical Chemistry, 70(23), 4974–4984.

    Article  CAS  PubMed  Google Scholar 

  84. Banerjee, D., Chowdhary, S., Chakraborty, S., & Bhattacharyya, R. (2017). Chapter 11 - Recent advances in detection of food adulteration. In R. K. Gupta, P. Dudeja, & M. Singh (Eds.), Food safety in the 21st century (pp. 145–160). San Diego: Academic Press.

    Chapter  Google Scholar 

  85. Yin, H.-Y., Chu, P.-T., Tsai, W.-C., & Wen, H.-W. (2016). Development of a barcode-style lateral flow immunoassay for the rapid semi-quantification of gliadin in foods. Food Chemistry, 192, 934–942.

    Article  CAS  PubMed  Google Scholar 

  86. Rahman, R., Amit, S. K., Uddin, M. M., Samira, S., Rahman, M., Rahman, M., et al. (2017). Time and temperature effect on the residual concentration of formaldehyde in formalin treated samples of Labeo rohita. International Conference on Food Security, International Conference on Food Security and Nutrition (ICFSN 2017), 4.

    Google Scholar 

  87. Islam, M., Mehnaz Mursalat, Muzahidul Islam Anik, MD. Sakib Ferdous, Mohidus Samad Khan Paper diagnostics to detect formalin in food. 2017.

    Google Scholar 

  88. Liu, C.-C., Wang, Y.-N., Fu, L.-M., & Huang, Y.-H. (2018). Microfluidic paper-based chip platform for formaldehyde concentration detection. Chemical Engineering Journal, 332, 695–701.

    Article  CAS  Google Scholar 

  89. Guzman, J. M. C. C., Tayo, L. L., Liu, C. C., Wang, Y. N., & Fu, L. M. (2018). Rapid microfluidic paper-based platform for low concentration formaldehyde detection. Sensors and Actuators B: Chemical, 255, 3623–3629.

    Article  CAS  Google Scholar 

  90. O'mahony, P. (2013). Finding horse meat in beef products—A global problem. QJM: An International Journal of Medicine, 106(6), 595–597.

    Article  CAS  Google Scholar 

  91. Xiao, L., Zhang, Z., Wu, C., Han, L., & Zhang, H. (2017). Molecularly imprinted polymer grafted paper-based method for the detection of 17β-estradiol. Food Chemistry, 221, 82–86.

    Article  CAS  PubMed  Google Scholar 

  92. Adkins, J. A., & Henry, C. S. (2015). Electrochemical detection in paper-based analytical devices using microwire electrodes. Analytica Chimica Acta, 891, 247–254.

    Article  CAS  PubMed  Google Scholar 

  93. Xiu, C., & Klein, K. K. (2010). Melamine in milk products in China: Examining the factors that led to deliberate use of the contaminant. Food Policy, 35(5), 463–470.

    Article  Google Scholar 

  94. Le, T., Yan, P., Xu, J., & Hao, Y. (2013). A novel colloidal gold-based lateral flow immunoassay for rapid simultaneous detection of cyromazine and melamine in foods of animal origin. Food Chemistry, 138(2–3), 1610–1615.

    Article  CAS  PubMed  Google Scholar 

  95. Kuan, C.-M., York, R. L., & Cheng, C.-M. (2015). Lignocellulose-based analytical devices: Bamboo as an analytical platform for chemical detection. Scientific Reports, 5, 18570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Choi, J. R., Nilghaz, A., Chen, L., Chou, K. C., & Lu, X. (2018). Modification of thread-based microfluidic device with polysiloxanes for the development of a sensitive and selective immunoassay. Sensors and Actuators B: Chemical, 260, 1043–1051.

    Article  CAS  Google Scholar 

  97. Dou, M., Lopez, J., Rios, M., Garcia, O., Xiao, C., Eastman, M., et al. (2016). A fully battery-powered inexpensive spectrophotometric system for high-sensitivity point-of-care analysis on a microfluidic chip. Analyst, 141(12), 3898–3903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Research, G.V. (2018). Paper Diagnostics Market. https://www.grandviewresearch.com/press-release/global-paper-diagnostics-market. Cited 9 September 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohidus Samad Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khandaker, M.M.R., Khan, M.S. (2021). Paper-Based Kits for Food Analysis and Authentication. In: Khan, M.S., Shafiur Rahman, M. (eds) Techniques to Measure Food Safety and Quality. Springer, Cham. https://doi.org/10.1007/978-3-030-68636-9_12

Download citation

Publish with us

Policies and ethics