Skip to main content

HPV-Associated Cervical Neoplasia

  • Chapter
  • First Online:
Practical Gynecologic Pathology

Part of the book series: Practical Anatomic Pathology ((PAP))

  • 877 Accesses

Abstract

This chapter addresses common benign changes in the cervix as well as in situ and invasive lesions associated with human papillomavirus (HPV). Metaplastic changes of both the squamous and columnar epithelium of the cervix are very common, including transitional cell metaplasia and tubal/tubo-endometrioid metaplasia. Additionally, various hyperplastic glandular proliferations may be seen, such as microglandular hyperplasia and lobular endocervical glandular hyperplasia. Cervical inflammation from various etiologies is extremely common and associated with characteristic reactive epithelial changes. Various alterations are also seen in women who are pregnant or taking exogenous hormones, for example, stromal decidualization and Arias-Stella reaction. While most of these benign findings are usually readily recognized as such, careful morphologic assessment and application of immunohistochemistry may be necessary for distinction from the preneoplastic and neoplastic entities which they may mimic. HPV-related squamous intraepithelial lesions of the cervix have undergone many changes in terminology, and are now classified as low grade (LSIL) and high grade (HSIL). HPV-related glandular intraepithelial neoplasia is termed adenocarcinoma in situ, and variations such as intestinal differentiation may be seen. Diagnosis of these lesions and distinction from benign mimics is aided by ancillary studies. Invasive HPV-related carcinomas include many subtypes of squamous cell carcinoma and adenocarcinoma. Classification systems, diagnostic criteria, and important pitfalls for all of these entities are provided. Additionally, the role of cytologic–histologic correlation and new management guidelines are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AGC:

atypical glandular cells

AIS:

adenocarcinoma in situ

ASCCP:

American Society for Colposcopy and Cervical Pathology

ASC-H:

atypical squamous cells, cannot exclude HSIL

ASCUS:

atypical squamous cells of undetermined significance

CAP:

College of American Pathologists

CHC:

cytologic–histologic correlation

CIN:

cervical intraepithelial neoplasia

CK:

cytokeratin

CLIA:

Clinical Laboratory Improvement Amendments of 1988

DLEGH:

diffuse laminar endocervical glandular hyperplasia

DNA:

deoxyribonucleic acid

EAC:

endocervical adenocarcinoma

EBV:

Epstein–Barr virus

ER:

estrogen receptor

FIGO:

International Federation of Gynecology and Obstetrics

HPV:

human papillomavirus

HSIL:

high-grade squamous intraepithelial lesion

IECC:

International Endocervical Adenocarcinoma Criteria and Classification

ISH:

in situ hybridization

iSMILE:

invasive stratified mucin-producing carcinoma

LAST:

Lower Anogenital Squamous Terminology

LEEP:

loop electrosurgical excision procedure

LEGH:

lobular endocervical glandular hyperplasia

LSIL:

low-grade squamous intraepithelial lesion

MGH:

microglandular hyperplasia

mRNA:

messenger ribonucleic acid

N/C:

nuclear-to-cytoplasmic

NEC:

neuroendocrine carcinoma

NOS:

not otherwise specified

PAS:

periodic acid-Schiff

PR:

progesterone receptor

SCC:

squamous cell carcinoma

SCJ:

squamocolumnar junction

SISCC:

superficially invasive squamous cell carcinoma

SMILE:

stratified mucin-producing intraepithelial lesion

WHO:

World Health Organization

References

  1. Weir MM, Bell DA, Young RH. Transitional cell metaplasia of the uterine cervix and vagina: an underrecognized lesion that may be confused with high-grade dysplasia. A report of 59 cases. Am J Surg Pathol. 1997;21(5):510–7.

    Article  CAS  PubMed  Google Scholar 

  2. Murphy N, Heffron CC, King B, Ganuguapati UG, Ring M, McGuinness E, et al. p16INK4A positivity in benign, premalignant and malignant cervical glandular lesions: a potential diagnostic problem. Virchows Arch. 2004;445(6):610–5.

    Article  CAS  PubMed  Google Scholar 

  3. Lapan B. Deciduosis of the cervix and vagina simulating carcinoma. Am J Obstet Gynecol. 1949;58(4):743–7.

    Article  CAS  PubMed  Google Scholar 

  4. Kearns M, Lala PK. Life history of decidual cells: a review. Am J Reprod Immunol. 1983;3(2):78–82.

    Article  CAS  Google Scholar 

  5. Arias-Stella J. Atypical endometrial changes associated with the presence of chorionic tissue. AMA Arch Pathol. 1954;58(2):112–28.

    CAS  PubMed  Google Scholar 

  6. Taylor HB, Irey NS, Norris HJ. Atypical endocervical hyperplasia in women taking oral contraceptives. JAMA. 1967;202(7):637–9.

    Article  CAS  PubMed  Google Scholar 

  7. Kyriakos M, Kempson RL, Konikov NF. A clinical and pathologic study of endocervical lesions associated with oral contraceptives. Cancer. 1968;22(1):99–110.

    Article  CAS  PubMed  Google Scholar 

  8. Greeley C, Schroeder S, Silverberg SG. Microglandular hyperplasia of the cervix: a true "pill" lesion? Int J Gynecol Pathol. 1995;14(1):50–4.

    Article  CAS  PubMed  Google Scholar 

  9. Young RH, Scully RE. Atypical forms of microglandular hyperplasia of the cervix simulating carcinoma. A report of five cases and review of the literature. Am J Surg Pathol. 1989;13(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  10. Abi-Raad R, Alomari A, Hui P, Buza N. Mitotically active microglandular hyperplasia of the cervix: a case series with implications for the differential diagnosis. Int J Gynecol Pathol. 2014;33(5):524–30.

    Article  PubMed  Google Scholar 

  11. Wang Y, Chen H, Jiang Q, Luo R, Zhou P, Wang Y, et al. Effect of progestin usage on the interpretation of cervical high-grade squamous intraepithelial lesion. Am J Surg Pathol. 2019;43(8):1066–73.

    Article  PubMed  Google Scholar 

  12. Centers for disease control and prevention. Diseases characterized by urethritis and cervicitis: centers for disease control and prevention; 2015. Available from: https://www.cdc.gov/std/tg2015/urethritis-and-cervicitis.htm

  13. Taylor SN, Lensing S, Schwebke J, Lillis R, Mena LA, Nelson AL, et al. Prevalence and treatment outcome of cervicitis of unknown etiology. Sex Transm Dis. 2013;40(5):379–85.

    Article  PubMed  Google Scholar 

  14. Lusk MJ, Konecny P. Cervicitis: a review. Curr Opin Infect Dis. 2008;21(1):49–55.

    PubMed  Google Scholar 

  15. Mukherjee S, Nagarsenkar A, Chandra S, Sahasrabhojanee M, Sawant D. Amoebic cervicitis mimicking posterior wall fibroid: a rare presentation. J Microbiol Immunol Infect. 2014;47(4):354–7.

    Article  PubMed  Google Scholar 

  16. Kjetland E, Leutscher P, Ndhlovu P. A review of female genital schistosomiasis. Trends Parasitol. 2020;28(2):58–65.

    Article  Google Scholar 

  17. Lesack D, Wahab I, Gilks CB. Radiation-induced atypia of endocervical epithelium: a histological, immunohistochemical and cytometric study. Int J Gynecol Pathol. 1996;15(3):242–7.

    Article  CAS  PubMed  Google Scholar 

  18. Nucci MR, Clement PB, Young RH. Lobular endocervical glandular hyperplasia, not otherwise specified: a clinicopathologic analysis of thirteen cases of a distinctive pseudoneoplastic lesion and comparison with fourteen cases of adenoma malignum. Am J Surg Pathol. 1999;23(8):886–91.

    Article  CAS  PubMed  Google Scholar 

  19. Mikami Y, Kiyokawa T, Hata S, Fujiwara K, Moriya T, Sasano H, et al. Gastrointestinal immunophenotype in adenocarcinomas of the uterine cervix and related glandular lesions: a possible link between lobular endocervical glandular hyperplasia/pyloric gland metaplasia and ‘adenoma malignum’. Mod Pathol. 2004;17(8):962–72.

    Article  PubMed  Google Scholar 

  20. Kawauchi S, Kusuda T, Liu XP, Suehiro Y, Kaku T, Mikami Y, et al. Is lobular endocervical glandular hyperplasia a cancerous precursor of minimal deviation adenocarcinoma?: a comparative molecular-genetic and immunohistochemical study. Am J Surg Pathol. 2008;32(12):1807–15.

    Article  PubMed  Google Scholar 

  21. Jones MA, Young RH, Scully RE. Diffuse laminar endocervical glandular hyperplasia. A benign lesion often confused with adenoma malignum (minimal deviation adenocarcinoma). Am J Surg Pathol. 1991;15(12):1123–9.

    Article  CAS  PubMed  Google Scholar 

  22. Ferry JA, Scully RE. Mesonephric remnants, hyperplasia, and neoplasia in the uterine cervix. A study of 49 cases. Am J Surg Pathol. 1990;14(12):1100–11.

    Article  CAS  PubMed  Google Scholar 

  23. Speert H. Obstetric-gynecologic eponymy; Martin Naboth and cervical cysts. Fertil Steril. 1956;7(1):66–70.

    Article  CAS  PubMed  Google Scholar 

  24. Vural F, Sanverdi I, Coskun AD, Kusgoz A, Temel O. Large nabothian cyst obstructing labour passage. J Clin Diagn Res. 2015;9(10):QD06–7.

    PubMed  PubMed Central  Google Scholar 

  25. Clement PB, Young RH. Deep nabothian cysts of the uterine cervix. A possible source of confusion with minimal-deviation adenocarcinoma (adenoma malignum). Int J Gynecol Pathol. 1989;8(4):340–8.

    Article  CAS  PubMed  Google Scholar 

  26. Segal GH, Hart WR. Cystic endocervical tunnel clusters. A clinicopathologic study of 29 cases of so-called adenomatous hyperplasia. Am J Surg Pathol. 1990;14(10):895–903.

    Article  CAS  PubMed  Google Scholar 

  27. Fluhmann CF. Focal hyperplasis (tunnel clusters) of the cervix uteri. Obstet Gynecol. 1961;17:206–14.

    CAS  PubMed  Google Scholar 

  28. Jones MA, Young RH. Endocervical type A (noncystic) tunnel clusters with cytologic atypia. A report of 14 cases. Am J Surg Pathol. 1996;20(11):1312–8.

    Article  CAS  PubMed  Google Scholar 

  29. Kondo T, Hashi A, Murata SI, Fischer SE, Nara M, Nakazawa T, et al. Gastric mucin is expressed in a subset of endocervical tunnel clusters: type A tunnel clusters of gastric phenotype. Histopathology. 2007;50(7):843–50.

    Article  CAS  PubMed  Google Scholar 

  30. Proppe KH, Scully RE, Rosai J. Postoperative spindle cell nodules of genitourinary tract resembling sarcomas. A report of eight cases. Am J Surg Pathol. 1984;8(2):101–8.

    Article  CAS  PubMed  Google Scholar 

  31. Kay S, Schneider V. Reactive spindle cell nodule of the endocervix simulating uterine sarcoma. Int J Gynecol Pathol. 1985;4(3):255–7.

    Article  CAS  PubMed  Google Scholar 

  32. Manson CM, Hirsch PJ, Coyne JD. Post-operative spindle cell nodule of the vulva. Histopathology. 1995;26(6):571–4.

    Article  CAS  PubMed  Google Scholar 

  33. Watanabe K, Baba K, Saito A, Hoshi N, Suzuki T. Pseudosarcomatous myofibroblastic tumor and myosarcoma of the urogenital tract. Arch Pathol Lab Med. 2001;125(8):1070–3.

    Article  CAS  PubMed  Google Scholar 

  34. Abenoza P, Shek YH, Perrone T. Inflammatory pseudotumor of the cervix. Int J Gynecol Pathol. 1994;13(1):80–6.

    Article  CAS  PubMed  Google Scholar 

  35. Burd EM. Human papillomavirus and cervical cancer. Clin Microbiol Rev. 2003;16(1):1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348(6):518–27.

    Article  PubMed  Google Scholar 

  37. Doorbar J. The papillomavirus life cycle. J Clin Virol. 2005;32(Suppl):7–15.

    Article  Google Scholar 

  38. Broders AC. Carcinoma in situ contrasted with benign penetrating epithelium. JAMA. 1932;99:1670–4.

    Article  Google Scholar 

  39. Reagan JW, Seidemann IL, Saracusa Y. The cellular morphology of carcinoma in situ and dysplasia or atypical hyperplasia of the uterine cervix. Cancer. 1953;6(2):224–34.

    Article  CAS  PubMed  Google Scholar 

  40. Richart RM, Barron BA. A follow-up study of patients with cervical dysplasia. Am J Obstet Gynecol. 1969;105(3):386–93.

    Article  CAS  PubMed  Google Scholar 

  41. Darragh TM, Colgan TJ, Cox JT, Heller DS, Henry MR, Luff RD, et al. The lower anogenital squamous terminology standardization project for HPV-associated lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. J Low Genit Tract Dis. 2012;16(3):205–42.

    Article  PubMed  Google Scholar 

  42. Genest DR, Stein L, Cibas E, Sheets E, Zitz JC, Crum CP. A binary (Bethesda) system for classifying cervical cancer precursors: criteria, reproducibility, and viral correlates. Hum Pathol. 1993;24(7):730–6.

    Article  CAS  PubMed  Google Scholar 

  43. McCluggage WG, Walsh MY, Thornton CM, Hamilton PW, Date A, Caughley LM, et al. Inter- and intra-observer variation in the histopathological reporting of cervical squamous intraepithelial lesions using a modified Bethesda grading system. Br J Obstet Gynaecol. 1998;105(2):206–10.

    Article  CAS  PubMed  Google Scholar 

  44. Ostor AG. Natural history of cervical intraepithelial neoplasia: a critical review. Int J Gynecol Pathol. 1993;12(2):186–92.

    Article  CAS  PubMed  Google Scholar 

  45. Massad LS, Einstein MH, Huh WK, Katki HA, Kinney WK, Schiffman M, et al. 2012 updated consensus guidelines for the management of abnormal cervical cancer screening tests and cancer precursors. J Low Genit Tract Dis. 2013;17(5 Suppl 1):S1–S27.

    Article  PubMed  Google Scholar 

  46. Perkins RB, Guido RS, Castle PE, Chelmow D, Einstein MH, Garcia F, et al. 2019 ASCCP risk-based management consensus guidelines for abnormal cervical cancer screening tests and cancer precursors. J Low Genit Tract Dis. 2020;24(2):102–31.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kalof AN, Evans MF, Simmons-Arnold L, Beatty BG, Cooper K. p16INK4A immunoexpression and HPV in situ hybridization signal patterns: potential markers of high-grade cervical intraepithelial neoplasia. Am J Surg Pathol. 2005;29(5):674–9.

    Article  PubMed  Google Scholar 

  48. Galgano MT, Castle PE, Atkins KA, Brix WK, Nassau SR, Stoler MH. Using biomarkers as objective standards in the diagnosis of cervical biopsies. Am J Surg Pathol. 2010;34(8):1077–87.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Klaes R, Friedrich T, Spitkovsky D, Ridder R, Rudy W, Petry U, et al. Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer. 2001;92(2):276–84.

    Article  CAS  PubMed  Google Scholar 

  50. Klaes R, Benner A, Friedrich T, Ridder R, Herrington S, Jenkins D, et al. p16INK4a immunohistochemistry improves interobserver agreement in the diagnosis of cervical intraepithelial neoplasia. Am J Surg Pathol. 2002;26(11):1389–99.

    Article  PubMed  Google Scholar 

  51. Li J, Poi MJ, Tsai MD. Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. Biochemistry. 2011;50(25):5566–82.

    Article  CAS  PubMed  Google Scholar 

  52. Wang SS, Trunk M, Schiffman M, Herrero R, Sherman ME, Burk RD, et al. Validation of p16INK4a as a marker of oncogenic human papillomavirus infection in cervical biopsies from a population-based cohort in Costa Rica. Cancer Epidemiol Biomark Prev. 2004;13(8):1355–60.

    Article  CAS  Google Scholar 

  53. Keating JT, Cviko A, Riethdorf S, Riethdorf L, Quade BJ, Sun D, et al. Ki-67, cyclin E, and p16INK4 are complimentary surrogate biomarkers for human papilloma virus-related cervical neoplasia. Am J Surg Pathol. 2001;25(7):884–91.

    Article  CAS  PubMed  Google Scholar 

  54. Agoff SN, Lin P, Morihara J, Mao C, Kiviat NB, Koutsky LA. p16(INK4a) expression correlates with degree of cervical neoplasia: a comparison with Ki-67 expression and detection of high-risk HPV types. Mod Pathol. 2003;16(7):665–73.

    Article  PubMed  Google Scholar 

  55. Ozaki S, Zen Y, Inoue M. Biomarker expression in cervical intraepithelial neoplasia: potential progression predictive factors for low-grade lesions. Hum Pathol. 2011;42(7):1007–12.

    Article  CAS  PubMed  Google Scholar 

  56. del Pino M, Garcia S, Fuste V, Alonso I, Fuste P, Torne A, et al. Value of p16(INK4a) as a marker of progression/regression in cervical intraepithelial neoplasia grade 1. Am J Obstet Gynecol. 2009;201(5):488, e1–7.

    PubMed  Google Scholar 

  57. Negri G, Vittadello F, Romano F, Kasal A, Rivasi F, Girlando S, et al. p16INK4a expression and progression risk of low-grade intraepithelial neoplasia of the cervix uteri. Virchows Arch. 2004;445(6):616–20.

    Article  PubMed  Google Scholar 

  58. Hariri J, Oster A. The negative predictive value of p16INK4a to assess the outcome of cervical intraepithelial neoplasia 1 in the uterine cervix. Int J Gynecol Pathol. 2007;26(3):223–8.

    Article  PubMed  Google Scholar 

  59. Liao GD, Sellors JW, Sun HK, Zhang X, Bao YP, Jeronimo J, et al. p16INK4A immunohistochemical staining and predictive value for progression of cervical intraepithelial neoplasia grade 1: a prospective study in China. Int J Cancer. 2014;134(7):1715–24.

    Article  CAS  PubMed  Google Scholar 

  60. Cortecchia S, Galanti G, Sgadari C, Costa S, De Lillo M, Caprara L, et al. Follow-up study of patients with cervical intraepithelial neoplasia grade 1 overexpressing p16Ink4a. Int J Gynecol Cancer. 2013;23(9):1663–9.

    Article  PubMed  Google Scholar 

  61. Maniar KP, Sanchez B, Paintal A, Gursel DB, Nayar R. Role of the biomarker p16 in downgrading -IN 2 diagnoses and predicting higher-grade lesions. Am J Surg Pathol. 2015;39(12):1708–18.

    Article  PubMed  Google Scholar 

  62. Horn LC, Reichert A, Oster A, Arndal SF, Trunk MJ, Ridder R, et al. Immunostaining for p16INK4a used as a conjunctive tool improves interobserver agreement of the histologic diagnosis of cervical intraepithelial neoplasia. Am J Surg Pathol. 2008;32(4):502–12.

    Article  PubMed  Google Scholar 

  63. Bergeron C, Ordi J, Schmidt D, Trunk MJ, Keller T, Ridder R. Conjunctive p16INK4a testing significantly increases accuracy in diagnosing high-grade cervical intraepithelial neoplasia. Am J Clin Pathol. 2010;133(3):395–406.

    Article  PubMed  Google Scholar 

  64. Conesa-Zamora P, Domenech-Peris A, Orantes-Casado FJ, Ortiz-Reina S, Sahuquillo-Frias L, Acosta-Ortega J, et al. Effect of human papillomavirus on cell cycle-related proteins p16, Ki-67, Cyclin D1, p53, and ProEx C in precursor lesions of cervical carcinoma: a tissue microarray study. Am J Clin Pathol. 2009;132(3):378–90.

    Article  PubMed  Google Scholar 

  65. al-Saleh W, Delvenne P, Greimers R, Fridman V, Doyen J, Boniver J. Assessment of Ki-67 antigen immunostaining in squamous intraepithelial lesions of the uterine cervix. Correlation with the histologic grade and human papillomavirus type. Am J Clin Pathol. 1995;104(2):154–60.

    Article  CAS  PubMed  Google Scholar 

  66. Herfs M, Yamamoto Y, Laury A, Wang X, Nucci MR, McLaughlin-Drubin ME, et al. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc Natl Acad Sci U S A. 2012;109(26):10516–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Paquette C, Mills AM, Stoler MH. Predictive value of cytokeratin 7 immunohistochemistry in cervical low-grade squamous intraepithelial lesion as a marker for risk of progression to a high-grade lesion. Am J Surg Pathol. 2016;40(2):236–43.

    Article  PubMed  Google Scholar 

  68. Mills AM, Paquette C, Terzic T, Castle PE, Stoler MH. CK7 immunohistochemistry as a predictor of CIN1 progression: a retrospective study of patients from the quadrivalent HPV vaccine trials. Am J Surg Pathol. 2017;41(2):143–52.

    Article  PubMed  Google Scholar 

  69. Huang EC, Tomic MM, Hanamornroongruang S, Meserve EE, Herfs M, Crum CP. p16ink4 and cytokeratin 7 immunostaining in predicting HSIL outcome for low-grade squamous intraepithelial lesions: a case series, literature review and commentary. Mod Pathol. 2016;29(12):1501–10.

    Article  CAS  PubMed  Google Scholar 

  70. Herfs M, Parra-Herran C, Howitt BE, Laury AR, Nucci MR, Feldman S, et al. Cervical squamocolumnar junction-specific markers define distinct, clinically relevant subsets of low-grade squamous intraepithelial lesions. Am J Surg Pathol. 2013;37(9):1311–8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Umphress B, Sanchez B, Paintal A, Nayar R, Maniar KP. Utility of CK7 versus p16 as a prognostic biomarker in CIN 2. Am J Surg Pathol. 2018;42(4):479–84.

    Article  PubMed  Google Scholar 

  72. Cooper K, Herrington CS, Stickland JE, Evans MF, McGee JO. Episomal and integrated human papillomavirus in cervical neoplasia shown by non-isotopic in situ hybridisation. J Clin Pathol. 1991;44(12):990–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Evans MF, Mount SL, Beatty BG, Cooper K. Biotinyl-tyramide-based in situ hybridization signal patterns distinguish human papillomavirus type and grade of cervical intraepithelial neoplasia. Mod Pathol. 2002;15(12):1339–47.

    Article  PubMed  Google Scholar 

  74. Guo M, Gong Y, Deavers M, Silva EG, Jan YJ, Cogdell DE, et al. Evaluation of a commercialized in situ hybridization assay for detecting human papillomavirus DNA in tissue specimens from patients with cervical intraepithelial neoplasia and cervical carcinoma. J Clin Microbiol. 2008;46(1):274–80.

    Article  CAS  PubMed  Google Scholar 

  75. Kong CS, Balzer BL, Troxell ML, Patterson BK, Longacre TA. p16INK4A immunohistochemistry is superior to HPV in situ hybridization for the detection of high-risk HPV in atypical squamous metaplasia. Am J Surg Pathol. 2007;31(1):33–43.

    Article  PubMed  Google Scholar 

  76. Dabic MM, Hlupic L, Babic D, Jukic S, Seiwerth S. Comparison of polymerase chain reaction and catalyzed signal amplification in situ hybridization methods for human papillomavirus detection in paraffin-embedded cervical preneoplastic and neoplastic lesions. Arch Med Res. 2004;35(6):511–6.

    Article  CAS  PubMed  Google Scholar 

  77. Ukpo OC, Flanagan JJ, Ma XJ, Luo Y, Thorstad WL, Lewis JS Jr. High-risk human papillomavirus E6/E7 mRNA detection by a novel in situ hybridization assay strongly correlates with p16 expression and patient outcomes in oropharyngeal squamous cell carcinoma. Am J Surg Pathol. 2011;35(9):1343–50.

    Article  PubMed  Google Scholar 

  78. Bishop JA, Ma XJ, Wang H, Luo Y, Illei PB, Begum S, et al. Detection of transcriptionally active high-risk HPV in patients with head and neck squamous cell carcinoma as visualized by a novel E6/E7 mRNA in situ hybridization method. Am J Surg Pathol. 2012;36(12):1874–82.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mills AM, Dirks DC, Poulter MD, Mills SE, Stoler MH. HR-HPV E6/E7 mRNA in situ hybridization: validation against PCR, DNA in situ hybridization, and p16 immunohistochemistry in 102 samples of cervical, vulvar, anal, and head and neck neoplasia. Am J Surg Pathol. 2017;41(5):607–15.

    Article  PubMed  Google Scholar 

  80. Yemelyanova A, Gravitt PE, Ronnett BM, Rositch AF, Ogurtsova A, Seidman J, et al. Immunohistochemical detection of human papillomavirus capsid proteins L1 and L2 in squamous intraepithelial lesions: potential utility in diagnosis and management. Mod Pathol. 2013;26(2):268–74.

    Article  CAS  PubMed  Google Scholar 

  81. Lin Z, Yemelyanova AV, Gambhira R, Jagu S, Meyers C, Kirnbauer R, et al. Expression pattern and subcellular localization of human papillomavirus minor capsid protein L2. Am J Pathol. 2009;174(1):136–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Choi YS, Kang WD, Kim SM, Choi YD, Nam JH, Park CS, et al. Human papillomavirus L1 capsid protein and human papillomavirus type 16 as prognostic markers in cervical intraepithelial neoplasia 1. Int J Gynecol Cancer. 2010;20(2):288–93.

    Article  PubMed  Google Scholar 

  83. Hilfrich R, Hariri J. Prognostic relevance of human papillomavirus L1 capsid protein detection within mild and moderate dysplastic lesions of the cervix uteri in combination with p16 biomarker. Anal Quant Cytol Histol. 2008;30(2):78–82.

    PubMed  Google Scholar 

  84. Negri G, Bellisano G, Zannoni GF, Rivasi F, Kasal A, Vittadello F, et al. p16 ink4a and HPV L1 immunohistochemistry is helpful for estimating the behavior of low-grade dysplastic lesions of the cervix uteri. Am J Surg Pathol. 2008;32(11):1715–20.

    Article  PubMed  Google Scholar 

  85. Ioffe OB, Sagae S, Moritani S, Dahmoush L, Chen TT, Silverberg SG. Proposal of a new scoring scheme for the diagnosis of noninvasive endocervical glandular lesions. Am J Surg Pathol. 2003;27(4):452–60.

    Article  PubMed  Google Scholar 

  86. Kurman RJ, Carcangiu ML, Herrington CS, Young RH, editors. WHO classification of tumours of female reproductive organs. 4th ed. Lyon: International Agency for Research on Cancer; 2014.

    Google Scholar 

  87. Miller RA, Mody DR, Tams KC, Thrall MJ. Glandular lesions of the cervix in clinical practice: a cytology, histology, and human papillomavirus correlation study from 2 institutions. Arch Pathol Lab Med. 2015;139(11):1431–6.

    Article  PubMed  Google Scholar 

  88. Kumar N, Gupta R, Gupta S. Glandular cell abnormalities in cervical cytology: what has changed in this decade and what has not? Eur J Obstet Gynecol Reprod Biol. 2019;240:68–73.

    Article  PubMed  Google Scholar 

  89. Quint KD, de Koning MN, van Doorn LJ, Quint WG, Pirog EC. HPV genotyping and HPV16 variant analysis in glandular and squamous neoplastic lesions of the uterine cervix. Gynecol Oncol. 2010;117(2):297–301.

    Article  CAS  PubMed  Google Scholar 

  90. Jaworski RC, Pacey NF, Greenberg ML, Osborn RA. The histologic diagnosis of adenocarcinoma in situ and related lesions of the cervix uteri. Adenocarcinoma in situ. Cancer. 1988;61(6):1171–81.

    Article  CAS  PubMed  Google Scholar 

  91. McCluggage WG. New developments in endocervical glandular lesions. Histopathology. 2013;62(1):138–60.

    Article  PubMed  Google Scholar 

  92. Steiner G, Friedell GH. Adenosquamous carcinoma in situ of the cervix. Cancer. 1965;18:807–10.

    Article  CAS  PubMed  Google Scholar 

  93. Park JJ, Sun D, Quade BJ, Flynn C, Sheets EE, Yang A, et al. Stratified mucin-producing intraepithelial lesions of the cervix: adenosquamous or columnar cell neoplasia? Am J Surg Pathol. 2000;24(10):1414–9.

    Article  CAS  PubMed  Google Scholar 

  94. Boyle DP, McCluggage WG. Stratified mucin-producing intraepithelial lesion (SMILE): report of a case series with associated pathological findings. Histopathology. 2015;66(5):658–63.

    Article  PubMed  Google Scholar 

  95. Riethdorf L, Riethdorf S, Lee KR, Cviko A, Loning T, Crum CP. Human papillomaviruses, expression of p16, and early endocervical glandular neoplasia. Hum Pathol. 2002;33(9):899–904.

    Article  CAS  PubMed  Google Scholar 

  96. Cameron RI, Maxwell P, Jenkins D, McCluggage WG. Immunohistochemical staining with MIB1, bcl2 and p16 assists in the distinction of cervical glandular intraepithelial neoplasia from tubo-endometrial metaplasia, endometriosis and microglandular hyperplasia. Histopathology. 2002;41(4):313–21.

    Article  CAS  PubMed  Google Scholar 

  97. McCluggage WG, Maxwell P, McBride HA, Hamilton PW, Bharucha H. Monoclonal antibodies Ki-67 and MIB1 in the distinction of tuboendometrial metaplasia from endocervical adenocarcinoma and adenocarcinoma in situ in formalin-fixed material. Int J Gynecol Pathol. 1995;14(3):209–16.

    Article  CAS  PubMed  Google Scholar 

  98. Lu X, Shiozawa T, Nakayama K, Toki T, Nikaido T, Fujii S. Abnormal expression of sex steroid receptors and cell cycle-related molecules in adenocarcinoma in situ of the uterine cervix. Int J Gynecol Pathol. 1999;18(2):109–14.

    Article  CAS  PubMed  Google Scholar 

  99. McCluggage WG. Immunohistochemistry as a diagnostic aid in cervical pathology. Pathology. 2007;39(1):97–111.

    Article  CAS  PubMed  Google Scholar 

  100. McCluggage WG, Shah R, Connolly LE, McBride HA. Intestinal-type cervical adenocarcinoma in situ and adenocarcinoma exhibit a partial enteric immunophenotype with consistent expression of CDX2. Int J Gynecol Pathol. 2008;27(1):92–100.

    Article  CAS  PubMed  Google Scholar 

  101. de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8(2):e180–e90.

    Article  PubMed  Google Scholar 

  102. The global cancer observatory. Globocan 2018: international agency for research on cancer, world health organization; 2018. Available from: http://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf

  103. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9.

    Article  CAS  PubMed  Google Scholar 

  104. Li N, Franceschi S, Howell-Jones R, Snijders PJ, Clifford GM. Human papillomavirus type distribution in 30,848 invasive cervical cancers worldwide: variation by geographical region, histological type and year of publication. Int J Cancer. 2011;128(4):927–35.

    Article  CAS  PubMed  Google Scholar 

  105. Mestwerdt G. Die fruhdiagnose des Kollumkarzinoms. Zentralbl Gynàkol. 1847;69:98–202.

    Google Scholar 

  106. Bhatla N, Berek JS, Cuello Fredes M, Denny LA, Grenman S, Karunaratne K, et al. Revised FIGO staging for carcinoma of the cervix uteri. Int J Gynaecol Obstet. 2019;145(1):129–35.

    Article  PubMed  Google Scholar 

  107. Cervical cancer treatment (PDQ®)–health professional version: national cancer institute at the national institutes of health; 2020. Available from: https://www.cancer.gov/types/cervical/hp/cervical-treatment-pdq

  108. Stehman FB, Bundy BN, DiSaia PJ, Keys HM, Larson JE, Fowler WC. Carcinoma of the cervix treated with radiation therapy. I. A multi-variate analysis of prognostic variables in the Gynecologic Oncology Group. Cancer. 1991;67(11):2776–85.

    Article  CAS  PubMed  Google Scholar 

  109. SEER cancer statistics factsheets: cervix uteri cancer. Bethesda: National Cancer Institute. Available from: http://seer.cancer.gov/statfacts/html/cervix.html

  110. Koenig C, Turnicky RP, Kankam CF, Tavassoli FA. Papillary squamotransitional cell carcinoma of the cervix: a report of 32 cases. Am J Surg Pathol. 1997;21(8):915–21.

    Article  CAS  PubMed  Google Scholar 

  111. Hasumi K, Sugano H, Sakamoto G, Masubuchi K, Kubo H. Circumscribed carcinoma of the uterine cervix, with marked lymphocytic infiltration. Cancer. 1977;39(6):2503–7.

    Article  CAS  PubMed  Google Scholar 

  112. Tseng CJ, Pao CC, Tseng LH, Chang CT, Lai CH, Soong YK, et al. Lymphoepithelioma-like carcinoma of the uterine cervix: association with Epstein-Barr virus and human papillomavirus. Cancer. 1997;80(1):91–7.

    Article  CAS  PubMed  Google Scholar 

  113. Islami F, Fedewa SA, Jemal A. Trends in cervical cancer incidence rates by age, race/ethnicity, histological subtype, and stage at diagnosis in the United States. Prev Med. 2019;123:316–23.

    Article  PubMed  Google Scholar 

  114. Stolnicu S, Barsan I, Hoang L, Patel P, Terinte C, Pesci A, et al. International endocervical adenocarcinoma criteria and classification (IECC): a new pathogenetic classification for invasive adenocarcinomas of the endocervix. Am J Surg Pathol. 2018;42(2):214–26.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Hodgson A, Park KJ, Djordjevic B, Howitt BE, Nucci MR, Oliva E, et al. International endocervical adenocarcinoma criteria and classification: validation and interobserver reproducibility. Am J Surg Pathol. 2019;43(1):75–83.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Hodgson A, Olkhov-Mitsel E, Howitt BE, Nucci MR, Parra-Herran C. International Endocervical Adenocarcinoma Criteria and Classification (IECC): correlation with adverse clinicopathological features and patient outcome. J Clin Pathol. 2019;72(5):347–53.

    Article  PubMed  Google Scholar 

  117. Stolnicu S, Hoang L, Chiu D, Hanko-Bauer O, Terinte C, Pesci A, et al. Clinical outcomes of HPV-associated and unassociated endocervical adenocarcinomas categorized by the International Endocervical Adenocarcinoma Criteria and Classification (IECC). Am J Surg Pathol. 2019;43(4):466–74.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Reynolds EA, Tierney K, Keeney GL, Felix JC, Weaver AL, Roman LD, et al. Analysis of outcomes of microinvasive adenocarcinoma of the uterine cervix by treatment type. Obstet Gynecol. 2010;116(5):1150–7.

    Article  PubMed  Google Scholar 

  119. Webb JC, Key CR, Qualls CR, Smith HO. Population-based study of microinvasive adenocarcinoma of the uterine cervix. Obstet Gynecol. 2001;97(5 Pt 1):701–6.

    CAS  PubMed  Google Scholar 

  120. Diaz De Vivar A, Roma AA, Park KJ, Alvarado-Cabrero I, Rasty G, Chanona-Vilchis JG, et al. Invasive endocervical adenocarcinoma: proposal for a new pattern-based classification system with significant clinical implications: a multi-institutional study. Int J Gynecol Pathol. 2013;32(6):592–601.

    Article  PubMed  Google Scholar 

  121. Shingleton HM, Bell MC, Fremgen A, Chmiel JS, Russell AH, Jones WB, et al. Is there really a difference in survival of women with squamous cell carcinoma, adenocarcinoma, and adenosquamous cell carcinoma of the cervix? Cancer. 1995;76(10 Suppl):1948–55.

    Article  CAS  PubMed  Google Scholar 

  122. Byun JM, Cho HJ, Park HY, Kim YN, Lee KB, Sung MS, et al. Clinical significance of the pattern-based classification in endocervical adenocarcinoma, usual and variants. Int J Clin Oncol. 2019;24(10):1264–72.

    Article  PubMed  Google Scholar 

  123. Stolnicu S, Barsan I, Hoang L, Patel P, Terinte C, Pesci A, et al. Stromal invasion pattern identifies patients at lowest risk of lymph node metastasis in HPV-associated endocervical adenocarcinomas, but is irrelevant in adenocarcinomas unassociated with HPV. Gynecol Oncol. 2018;150(1):56–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Paquette C, Jeffus SK, Quick CM, Conaway MR, Stoler MH, Atkins KA. Interobserver variability in the application of a proposed histologic subclassification of endocervical adenocarcinoma. Am J Surg Pathol. 2015;39(1):93–100.

    Article  PubMed  Google Scholar 

  125. Wheeler DT, Kurman RJ. The relationship of glands to thick-wall blood vessels as a marker of invasion in endocervical adenocarcinoma. Int J Gynecol Pathol. 2005;24(2):125–30.

    Article  PubMed  Google Scholar 

  126. Young RH, Scully RE. Villoglandular papillary adenocarcinoma of the uterine cervix. A clinicopathologic analysis of 13 cases. Cancer. 1989;63(9):1773–9.

    Article  CAS  PubMed  Google Scholar 

  127. Jones MW, Silverberg SG, Kurman RJ. Well-differentiated villoglandular adenocarcinoma of the uterine cervix: a clinicopathological study of 24 cases. Int J Gynecol Pathol. 1993;12(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  128. Utsugi K, Shimizu Y, Akiyama F, Hasumi K. Villoglandular papillary adenocarcinoma of the uterine cervix with bulky lymph node metastases. Eur J Obstet Gynecol Reprod Biol. 2002;105(2):186–8.

    Article  PubMed  Google Scholar 

  129. Lastra RR, Park KJ, Schoolmeester JK. Invasive stratified Mucin-producing carcinoma and stratified Mucin-producing intraepithelial lesion (SMILE): 15 cases presenting a spectrum of cervical neoplasia with description of a distinctive variant of invasive adenocarcinoma. Am J Surg Pathol. 2016;40(2):262–9.

    Article  PubMed  Google Scholar 

  130. Clinical laboratory improvements amendments of 1988 (CLIA) – standard: cytology, 42 CFR. Sect. 493.1274, 2003.

    Google Scholar 

  131. Crothers BA, Jones BA, Cahill LA, Moriarty AT, Mody DR, Tench WD, et al. Quality improvement opportunities in gynecologic cytologic-histologic correlations: findings from the College of American Pathologists Gynecologic Cytopathology Quality Consensus Conference working group 4. Arch Pathol Lab Med. 2013;137(2):199–213.

    Article  PubMed  Google Scholar 

  132. Gupta R, Hariprasad R, Dhanasekaran K, Sodhani P, Mehrotra R, Kumar N, et al. Reappraisal of cytology-histology correlation in cervical cytology based on the recent American Society of Cytopathology guidelines (2017) at a cancer research centre. Cytopathology. 2020;31(1):53–8.

    Article  PubMed  Google Scholar 

  133. Lennerz JK, Perry A, Mills JC, Huettner PC, Pfeifer JD. Mucoepidermoid carcinoma of the cervix: another tumor with the t(11;19)-associated CRTC1-MAML2 gene fusion. Am J Surg Pathol. 2009;33(6):835–43.

    Article  PubMed  Google Scholar 

  134. Kurman R, Ellenson L, Ronnett B, editors. Blaustein’s pathology of the female genital tract. 7th ed. Cham: Springer Nature; 2019.

    Google Scholar 

  135. Ueda Y, Miyatake T, Okazawa M, Kimura T, Miyake T, Fujiwara K, et al. Clonality and HPV infection analysis of concurrent glandular and squamous lesions and adenosquamous carcinomas of the uterine cervix. Am J Clin Pathol. 2008;130(3):389–400.

    Article  CAS  PubMed  Google Scholar 

  136. Yoshida T, Sano T, Oyama T, Kanuma T, Fukuda T. Prevalence, viral load, and physical status of HPV 16 and 18 in cervical adenosquamous carcinoma. Virchows Arch. 2009;455(3):253–9.

    Article  CAS  PubMed  Google Scholar 

  137. Lee JY, Lee C, Hahn S, Kim MA, Kim HS, Chung HH, et al. Prognosis of adenosquamous carcinoma compared with adenocarcinoma in uterine cervical cancer: a systematic review and meta-analysis of observational studies. Int J Gynecol Cancer. 2014;24(2):289–94.

    Article  PubMed  Google Scholar 

  138. Mabuchi S, Okazawa M, Kinose Y, Matsuo K, Fujiwara M, Suzuki O, et al. Comparison of the prognoses of FIGO stage I to stage II adenosquamous carcinoma and adenocarcinoma of the uterine cervix treated with radical hysterectomy. Int J Gynecol Cancer. 2012;22(8):1389–97.

    Article  PubMed  Google Scholar 

  139. Maier RC, Norris HJ. Glassy cell carcinoma of the cervix. Obstet Gynecol. 1982;60(2):219–24.

    CAS  PubMed  Google Scholar 

  140. Costa MJ, Kenny MB, Hewan-Lowe K, Judd R. Glassy cell features in adenosquamous carcinoma of the uterine cervix. Histologic, ultrastructural, immunohistochemical, and clinical findings. Am J Clin Pathol. 1991;96(4):520–8.

    Article  CAS  PubMed  Google Scholar 

  141. Kato N, Katayama Y, Kaimori M, Motoyama T. Glassy cell carcinoma of the uterine cervix: histochemical, immunohistochemical, and molecular genetic observations. Int J Gynecol Pathol. 2002;21(2):134–40.

    Article  PubMed  Google Scholar 

  142. Atlas I, Gajewski W, Falkenberry S, Granai CO, Steinhoff MM. Absence of estrogen and progesterone receptors in glassy cell carcinoma of the cervix. Obstet Gynecol. 1998;91(1):136–8.

    Article  CAS  PubMed  Google Scholar 

  143. Guitarte C, Alagkiozidis I, Mize B, Stevens E, Salame G, Lee YC. Glassy cell carcinoma of the cervix: a systematic review and meta-analysis. Gynecol Oncol. 2014;133(2):186–91.

    Article  PubMed  Google Scholar 

  144. Nagai T, Okubo T, Sakaguchi R, Seki H, Takeda S. Glassy cell carcinoma of the uterine cervix responsive to neoadjuvant intraarterial chemotherapy. Int J Clin Oncol. 2008;13(6):541–4.

    Article  PubMed  Google Scholar 

  145. Littman P, Clement PB, Henriksen B, Wang CC, Robboy SJ, Taft PD, et al. Glassy cell carcinoma of the cervix. Cancer. 1976;37(5):2238–46.

    Article  CAS  PubMed  Google Scholar 

  146. McCluggage WG, Kennedy K, Busam KJ. An immunohistochemical study of cervical neuroendocrine carcinomas: neoplasms that are commonly TTF1 positive and which may express CK20 and P63. Am J Surg Pathol. 2010;34(4):525–32.

    Article  PubMed  Google Scholar 

  147. Wang TY, Chen BF, Yang YC, Chen H, Wang Y, Cviko A, et al. Histologic and immunophenotypic classification of cervical carcinomas by expression of the p53 homologue p63: a study of 250 cases. Hum Pathol. 2001;32(5):479–86.

    Article  CAS  PubMed  Google Scholar 

  148. Grayson W, Rhemtula HA, Taylor LF, Allard U, Tiltman AJ. Detection of human papillomavirus in large cell neuroendocrine carcinoma of the uterine cervix: a study of 12 cases. J Clin Pathol. 2002;55(2):108–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Stoler MH, Mills SE, Gersell DJ, Walker AN. Small-cell neuroendocrine carcinoma of the cervix. A human papillomavirus type 18-associated cancer. Am J Surg Pathol. 1991;15(1):28–32.

    Article  CAS  PubMed  Google Scholar 

  150. Ishikawa M, Kasamatsu T, Tsuda H, Fukunaga M, Sakamoto A, Kaku T, et al. A multi-center retrospective study of neuroendocrine tumors of the uterine cervix: prognosis according to the new 2018 staging system, comparing outcomes for different chemotherapeutic regimens and histopathological subtypes. Gynecol Oncol. 2019;155(3):444–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kruti P. Maniar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maniar, K.P., Blanco, L.Z., Wei, JJ. (2021). HPV-Associated Cervical Neoplasia. In: Wei, JJ., Hui, P. (eds) Practical Gynecologic Pathology. Practical Anatomic Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-68608-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68608-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68607-9

  • Online ISBN: 978-3-030-68608-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics