Skip to main content

Molecular Diagnosis

  • Chapter
  • First Online:
Practical Gynecologic Pathology

Part of the book series: Practical Anatomic Pathology ((PAP))

  • 845 Accesses

Abstract

This chapter is meant to demonstrate the growing need for molecular diagnostic techniques in various areas of gynecologic pathology ranging from gestational trophoblastic disease to uterine and ovarian neoplasia. Several new entities are discussed that, pertinently, are defined by their molecular diagnostic findings, in the form of either gene mutations or gene fusions. The specific topics discussed herein include (1) partial and complete hydatidiform molar gestations and their mimickers; (2) the subtypes of high-grade endometrial stromal sarcoma and the gene fusions that define them; (3) leiomyosarcoma variants that have lower mitotic rate thresholds than conventional spindle cell leiomyosarcoma and the gene fusions that define them; (4) the recently described fibrosarcoma-like tumors of the uterus; (5) the significance of DICER1 mutations in gynecologic pathology and how they relate to our complex and evolving understanding of ovarian sex cord-stromal tumors including Sertoli-Leydig cell tumors, juvenile granulosa cell tumors, and gynandroblastomas; (6) the significance of FOXL2 mutations in gynecologic pathology; (7) the gynecologic tumors that are defined by SWI/SNF family protein deficiency, and their prognostic, syndromic, and therapeutic implications; (8) the significance of microsatellite instability in gynecologic tumors, including their histological features, Lynch syndromic associations, and therapeutic implications; and (9) the significance of STK11 mutation in gynecologic pathology in relation to both Peutz-Jeghers syndrome and a novel unusual adnexal tumor seen both in the syndromic and sporadic setting. An overarching concept in this chapter is our emphasis that there is a growing need for the integration of molecular diagnostic techniques in gynecologic pathology, due both to the disease-defining nature of the molecular genetic underpinnings of each of the entities discussed herein and because of theragnostic reasons, since many of these newly defined entities have mutations or gene fusions that are associated with specific targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGCT:

Adult granulosa cell tumor

CHM:

Complete hydatidiform mole

DFSP:

Dermatofibrosarcoma protuberans

ERMS:

Embryonal rhabdomyosarcoma

FBCHM:

Familial recurrent hydatidiform moles/familial biparental complete hydatidiform moles

GAB:

Gynandroblastoma

HGESS:

High-grade endometrial stromal sarcomas

HPF:

High-power field

IHC:

Immunohistochemistry

IMT:

Inflammatory myofibroblastic tumor

ITD:

Internal tandem duplication

LGESS:

Low-grade endometrial stromal sarcoma

LMS:

Leiomyosarcoma

MMMT:

Malignant mixed Mullerian tumor

MMR:

Mismatch repair proteins

MMR-D:

Mismatch repair protein deficiency

MPNST:

Malignant peripheral nerve sheath tumor

MRT:

Malignant rhabdoid tumor of the uterus

MSI:

Microsatellite instability

PCR:

Polymerase chain reaction

PHM:

Partial hydatidiform mole

RTPS:

Rhabdoid tumor predisposition syndrome

SCCOHT:

Small cell carcinoma of the ovary, hypercalcemic type

SCTAT :

Sex cord tumor with annular tubules

SFT:

Solitary fibrous tumor

SLCT:

Sertoli-Leydig cell tumor

TILs:

Tumor-infiltrating lymphocytes

References

  1. Hui P, Buza N, Murphy KM, Ronnett BM. Hydatidiform moles: genetic basis and precision diagnosis. Annu Rev Pathol. 2017;12:449–85.

    Article  CAS  PubMed  Google Scholar 

  2. Nguyen NM, Zhang L, Reddy R, et al. Comprehensive genotype-phenotype correlations between NLRP7 mutations and the balance between embryonic tissue differentiation and trophoblastic proliferation. J Med Genet. 2014;51(9):623–34.

    Article  PubMed  Google Scholar 

  3. Buza N, McGregor SM, Barroilhet L, Zheng X, Hui P. Paternal uniparental isodisomy of tyrosine hydroxylase locus at chromosome 11p15.4: spectrum of phenotypical presentations simulating hydatidiform moles. Mod Pathol. 2019;32(8):1180–8.

    Article  CAS  PubMed  Google Scholar 

  4. Kurman RJ, International Agency for Research on Cancer, World Health Organization. WHO classification of tumours of female reproductive organs. 4th ed. International Agency for Research on Cancer: Lyon; 2014.

    Google Scholar 

  5. Lee CH, Marino-Enriquez A, Ou W, et al. The clinicopathologic features of YWHAE-FAM22 endometrial stromal sarcomas: a histologically high-grade and clinically aggressive tumor. Am J Surg Pathol. 2012;36(5):641–53.

    Article  PubMed  Google Scholar 

  6. Marino-Enriquez A, Lauria A, Przybyl J, et al. BCOR internal tandem duplication in high-grade uterine sarcomas. Am J Surg Pathol. 2018;42(3):335–41.

    Article  PubMed  Google Scholar 

  7. Kao YC, Sung YS, Zhang L, et al. BCOR overexpression is a highly sensitive marker in round cell sarcomas with BCOR genetic abnormalities. Am J Surg Pathol. 2016;40(12):1670–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ferris SP, Velazquez Vega J, Aboian M, et al. High-grade neuroepithelial tumor with BCOR exon 15 internal tandem duplication-a comprehensive clinical, radiographic, pathologic, and genomic analysis. Brain Pathol. 2020;30(1):46–62.

    Article  CAS  PubMed  Google Scholar 

  9. Shah VI, McCluggage WG. Cyclin D1 does not distinguish YWHAE-NUTM2 high-grade endometrial stromal sarcoma from undifferentiated endometrial carcinoma. Am J Surg Pathol. 2015;39(5):722–4.

    Article  PubMed  Google Scholar 

  10. Stewart CJ, Crook ML. SWI/SNF complex deficiency and mismatch repair protein expression in undifferentiated and dedifferentiated endometrial carcinoma. Pathology. 2015;47(5):439–45.

    Article  CAS  PubMed  Google Scholar 

  11. Kolin DL, Quick CM, Dong F, et al. SMARCA4-deficient uterine sarcoma and undifferentiated endometrial carcinoma are distinct cinicopathologic entities. Am J Surg Pathol. 2020;44(2):263–70.

    Article  PubMed  Google Scholar 

  12. Lee CH, Kao YC, Lee WR, et al. Clinicopathologic characterization of GREB1-rearranged uterine sarcomas with variable sex-cord differentiation. Am J Surg Pathol. 2019;43(7):928–42.

    Article  PubMed  Google Scholar 

  13. Goebel EA, Hernandez Bonilla S, Dong F, et al. Uterine tumor resembling ovarian sex cord tumor (UTROSCT): a morphologic and molecular study of 26 cases confirms recurrent NCOA1-3 rearrangement. Am J Surg Pathol. 2020;44(1):30–42.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lewis N, Soslow RA, Delair DF, et al. ZC3H7B-BCOR high-grade endometrial stromal sarcomas: a report of 17 cases of a newly defined entity. Mod Pathol. 2018;31(4):674–84.

    Article  PubMed  Google Scholar 

  15. Chiang S, Samore W, Zhang L, et al. PGR gene fusions identify a molecular subset of uterine epithelioid leiomyosarcoma with rhabdoid features. Am J Surg Pathol. 2019;43(6):810–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Haimes JD, Stewart CJR, Kudlow BA, et al. Uterine inflammatory myofibroblastic tumors frequently harbor ALK fusions with IGFBP5 and THBS1. Am J Surg Pathol. 2017;41(6):773–80.

    Article  PubMed  Google Scholar 

  17. Stewart CJ, Charles A, Foulkes WD. Gynecologic manifestations of the DICER1 syndrome. Surg Pathol Clin. 2016;9(2):227–41.

    Article  PubMed  Google Scholar 

  18. Li RF, Gupta M, McCluggage WG, Ronnett BM. Embryonal rhabdomyosarcoma (botryoid type) of the uterine corpus and cervix in adult women: report of a case series and review of the literature. Am J Surg Pathol. 2013;37(3):344–55.

    Article  PubMed  Google Scholar 

  19. Muthukumarana V, Fix DJ, Stolnicu S, et al. BCOR expression in mullerian adenosarcoma: A potential diagnostic pitfall. Am J Surg Pathol. 2020;

    Google Scholar 

  20. Oliva E. Practical issues in uterine pathology from banal to bewildering: the remarkable spectrum of smooth muscle neoplasia. Mod Pathol. 2016;29(Suppl 1):S104–20.

    Article  CAS  PubMed  Google Scholar 

  21. Arias-Stella JA 3rd, Benayed R, Oliva E, et al. Novel PLAG1 gene rearrangement distinguishes a subset of uterine myxoid Leiomyosarcoma from other uterine myxoid mesenchymal tumors. Am J Surg Pathol. 2019;43(3):382–8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ramalingam P, Masand RP, Euscher ED, Malpica A. Undifferentiated carcinoma of the endometrium: an expanded Immunohistochemical analysis including PAX-8 and basal-like carcinoma surrogate markers. Int J Gynecol Pathol. 2016;35(5):410–8.

    Article  CAS  PubMed  Google Scholar 

  23. Fletcher CDM, World Health Organization, International Agency for Research on Cancer. WHO classification of tumours of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013.

    Google Scholar 

  24. Suurmeijer AJH, Kao YC, Antonescu CR. New advances in the molecular classification of pediatric mesenchymal tumors. Genes Chromosomes Cancer. 2019;58(2):100–10.

    Article  CAS  PubMed  Google Scholar 

  25. Antonescu CR, Dickson BC, Swanson D, et al. Spindle cell tumors with RET gene fusions exhibit a morphologic spectrum akin to tumors with NTRK gene fusions. Am J Surg Pathol. 2019;43(10):1384–91.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Miettinen M, Felisiak-Golabek A, Luina Contreras A, et al. New fusion sarcomas: histopathology and clinical significance of selected entities. Hum Pathol. 2019;86:57–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamazaki F, Nakatani F, Asano N, et al. Novel NTRK3 fusions in fibrosarcomas of adults. Am J Surg Pathol. 2019;43(4):523–30.

    Article  PubMed  Google Scholar 

  28. Chiang S, Cotzia P, Hyman DM, et al. NTRK fusions define a novel uterine sarcoma subtype with features of fibrosarcoma. Am J Surg Pathol. 2018;42(6):791–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Croce S, Hostein I, Longacre TA, et al. Uterine and vaginal sarcomas resembling fibrosarcoma: a clinicopathological and molecular analysis of 13 cases showing common NTRK-rearrangements and the description of a COL1A1-PDGFB fusion novel to uterine neoplasms. Mod Pathol. 2019;32(7):1008–22.

    Article  CAS  PubMed  Google Scholar 

  30. Mills AM, Karamchandani JR, Vogel H, Longacre TA. Endocervical fibroblastic malignant peripheral nerve sheath tumor (neurofibrosarcoma): report of a novel entity possibly related to endocervical CD34 fibrocytes. Am J Surg Pathol. 2011;35(3):404–12.

    Article  PubMed  Google Scholar 

  31. Weisman PS, Altinok M, Carballo EV, et al. Uterine cervical sarcoma with a novel RET-SPECC1L fusion in an adult: a case which expands the homology between RET-rearranged and NTRK-rearranged tumors. Am J Surg Pathol. 2020;

    Google Scholar 

  32. Laetsch TW, DuBois SG, Mascarenhas L, et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 2018;19(5):705–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Subbiah V, Velcheti V, Tuch BB, et al. Selective RET kinase inhibition for patients with RET-altered cancers. Ann Oncol. 2018;29(8):1869–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schultz KAP, Harris AK, Finch M, et al. DICER1-related Sertoli-Leydig cell tumor and gynandroblastoma: clinical and genetic findings from the international ovarian and testicular stromal tumor registry. Gynecol Oncol. 2017;147(3):521–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bean GR, Anderson J, Sangoi AR, Krings G, Garg K. DICER1 mutations are frequent in mullerian adenosarcomas and are independent of rhabdomyosarcomatous differentiation. Mod Pathol. 2019;32(2):280–9.

    Article  PubMed  Google Scholar 

  36. Conlon N, Schultheis AM, Piscuoglio S, et al. A survey of DICER1 hotspot mutations in ovarian and testicular sex cord-stromal tumors. Mod Pathol. 2015;28(12):1603–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Karnezis AN, Wang Y, Keul J, et al. DICER1 and FOXL2 mutation status correlates with clinicopathologic features in ovarian Sertoli-Leydig cell tumors. Am J Surg Pathol. 2019;43(5):628–38.

    Article  PubMed  Google Scholar 

  38. Oost EE, Charles A, Choong CS, et al. Ovarian sex cord-stromal tumors in patients with probable or confirmed germline DICER1 mutations. Int J Gynecol Pathol. 2015;34(3):266–74.

    Article  CAS  PubMed  Google Scholar 

  39. Al-Agha OM, Huwait HF, Chow C, et al. FOXL2 is a sensitive and specific marker for sex cord-stromal tumors of the ovary. Am J Surg Pathol. 2011;35(4):484–94.

    Article  PubMed  Google Scholar 

  40. Stall JN, Young RH. Granulosa cell tumors of the ovary with prominent tecoma-like foci: a report of 16 cases emphasizing the ongoing utility of the reticulin stain in the modern era. Int J Gynecol Pathol. 2019;38(2):143–50.

    Article  PubMed  Google Scholar 

  41. Buza N, Wong S, Hui P. FOXL2 mutation analysis of ovarian sex cord-stromal tumors: genotype-phenotype correlation with diagnostic considerations. Int J Gynecol Pathol. 2018;37(4):305–15.

    Article  CAS  PubMed  Google Scholar 

  42. Conlon N, Silva A, Guerra E, et al. Loss of SMARCA4 expression is both sensitive and specific for the diagnosis of small cell carcinoma of ovary, hypercalcemic type. Am J Surg Pathol. 2016;40(3):395–403.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Moes-Sosnowska J, Szafron L, Nowakowska D, et al. Germline SMARCA4 mutations in patients with ovarian small cell carcinoma of hypercalcemic type. Orphanet J Rare Dis. 2015;10:32.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Connor YD, Miao D, Lin DI, et al. Germline mutations of SMARCA4 in small cell carcinoma of the ovary, hypercalcemic type and in SMARCA4-deficient undifferentiated uterine sarcoma: clinical features of a single family and comparison of large cohorts. Gynecol Oncol. 2019;

    Google Scholar 

  45. Agaimy A, Daum O, Markl B, Lichtmannegger I, Michal M, Hartmann A. SWI/SNF complex-deficient undifferentiated/rhabdoid carcinomas of the gastrointestinal tract: a series of 13 cases highlighting mutually exclusive loss of SMARCA4 and SMARCA2 and frequent co-inactivation of SMARCB1 and SMARCA2. Am J Surg Pathol. 2016;40(4):544–53.

    Article  PubMed  Google Scholar 

  46. Ramalingam P, Croce S, McCluggage WG. Loss of expression of SMARCA4 (BRG1), SMARCA2 (BRM) and SMARCB1 (INI1) in undifferentiated carcinoma of the endometrium is not uncommon and is not always associated with rhabdoid morphology. Histopathology. 2017;70(3):359–66.

    Article  PubMed  Google Scholar 

  47. Lemery S, Keegan P, Pazdur R. First FDA approval agnostic of cancer site – when a biomarker defines the indication. N Engl J Med. 2017;377(15):1409–12.

    Google Scholar 

  48. Shia J, Holck S, Depetris G, Greenson JK, Klimstra DS. Lynch syndrome-associated neoplasms: a discussion on histopathology and immunohistochemistry. Familial Cancer. 2013;12(2):241–60.

    Article  CAS  PubMed  Google Scholar 

  49. Pocrnich CE, Ramalingam P, Euscher ED, Malpica A. Neuroendocrine carcinoma of the endometrium: a clinicopathologic study of 25 cases. Am J Surg Pathol. 2016;40(5):577–86.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sahnane N, Furlan D, Monti M, et al. Microsatellite unstable gastrointestinal neuroendocrine carcinomas: a new clinicopathologic entity. Endocr Relat Cancer. 2015;22(1):35–45.

    Article  CAS  PubMed  Google Scholar 

  51. Talia KL, Stewart CJR, Howitt BE, Nucci MR, McCluggage WG. HPV-negative gastric type adenocarcinoma in situ of the cervix: a spectrum of rare lesions exhibiting gastric and intestinal differentiation. Am J Surg Pathol. 2017;41(8):1023–33.

    Article  PubMed  Google Scholar 

  52. Bennett JA, et al: American Journal of Surgical Pathology, 2021, epub ahead of print, PMID: 33534223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Weisman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weisman, P., Wei, JJ., Hui, P. (2021). Molecular Diagnosis. In: Wei, JJ., Hui, P. (eds) Practical Gynecologic Pathology. Practical Anatomic Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-68608-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68608-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68607-9

  • Online ISBN: 978-3-030-68608-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics