Skip to main content

Immunohistochemistry

  • Chapter
  • First Online:
Practical Gynecologic Pathology

Part of the book series: Practical Anatomic Pathology ((PAP))

  • 902 Accesses

Abstract

Tumors arising in the gynecologic tract display a broad spectrum of histologic features, many of which can overlap with other entities within the same organ or between primary sites. Furthermore, rare tumors can mimic more commonly encountered subtypes. Immunohistochemistry is a useful adjunct to the proper classification of tumors of the female genital tract. Such proper classification is essential as patient prognosis as well as possible treatment can vary with the tumor type. Recently, immunohistochemistry has been utilized to direct therapy as well as to screen for potential genetic tumor alteration. The purpose of this chapter is to present relevant questions in the current use of immunohistochemistry in the evaluation of gynecologic tumors both as a diagnostic tool and as a tool to direct treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

dVIN:

Differentiated vulvar intraepithelial neoplasia

EIN:

Endometrial intraepithelial neoplasia

ETT:

Epithelioid trophoblastic tumor

FIGO:

International Federation of Gynecologic Oncology

HPV:

Human Papilloma Virus

LS:

Lynch syndrome

MMR:

Mismatch repair

MSI:

Microsatellite instability

PD:

Paget’s disease

PSTT:

Placental site trophoblastic tumor

SCC:

Squamous cell carcinoma

STIC:

Serous tubal intraepithelial carcinoma

STUMP:

Smooth muscle tumor of uncertain malignant potential

VIN:

Vulvar intraepithelial neoplasia

References

  1. Sand FL, Nielsen DMB, Frederiksen MH, Rasmussen CL, Kjaer SK. The prognostic value of p16 and p53 expression for survival after vulvar cancer: a systematic review and meta-analysis. Gynecol Oncol. 2019;152(1):208–17.

    Article  CAS  PubMed  Google Scholar 

  2. van de Nieuwenhof HP, Bulten J, Hollema H, Dommerholt RG, Massuger LF, van der Zee AG, et al. Differentiated vulvar intraepithelial neoplasia is often found in lesions, previously diagnosed as lichen sclerosus, which have progressed to vulvar squamous cell carcinoma. Mod Pathol. 2011;24(2):297–305.

    Article  PubMed  Google Scholar 

  3. Yang B, Hart WR. Vulvar intraepithelial neoplasia of the simplex (differentiated) type: a clinicopathologic study including analysis of HPV and p53 expression. Am J Surg Pathol. 2000;24(3):429–41.

    Article  CAS  PubMed  Google Scholar 

  4. Kortekaas KE, Solleveld-Westerink N, Tessier-Cloutier B, Rutten TA, van Poelgeest MIE, Gilks CB, et al. Performance of the pattern based interpretation of p53 immunohistochemistry as a surrogate for TP53 mutations in vulvar squamous cell carcinoma. Histopathology. 2020;77(1):92–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tessier-Cloutier B, Kortekaas KE, Thompson E, Pors J, Chen J, Ho J, et al. Major p53 immunohistochemical patterns in in situ and invasive squamous cell carcinomas of the vulva and correlation with TP53 mutation status. Mod Pathol. 2020;33:1595–605.

    Article  CAS  PubMed  Google Scholar 

  6. Thompson EF, Chen J, Huvila J, Pors J, Ren H, Ho J, et al. p53 Immunohistochemical patterns in HPV-related neoplasms of the female lower genital tract can be mistaken for TP53 null or missense mutational patterns. Mod Pathol. 2020;33:1649–59.

    Article  CAS  PubMed  Google Scholar 

  7. Singh N, Leen SL, Han G, Faruqi A, Kokka F, Rosenthal A, et al. Expanding the morphologic spectrum of differentiated VIN (dVIN) through detailed mapping of cases with p53 loss. Am J Surg Pathol. 2015;39(1):52–60.

    Article  PubMed  Google Scholar 

  8. Buza N, Hui P. Immunohistochemistry in gynecologic pathology: an example-based practical update. Arch Pathol Lab Med. 2017;141(8):1052–71.

    Article  CAS  PubMed  Google Scholar 

  9. Liegl B, Regauer S. p53 immunostaining in lichen sclerosus is related to ischaemic stress and is not a marker of differentiated vulvar intraepithelial neoplasia (d-VIN). Histopathology. 2006;48(3):268–74.

    Article  CAS  PubMed  Google Scholar 

  10. Vanin K, Scurry J, Thorne H, Yuen K, Ramsay RG. Overexpression of wild-type p53 in lichen sclerosus adjacent to human papillomavirus-negative vulvar cancer. J Invest Dermatol. 2002;119(5):1027–33.

    Article  CAS  PubMed  Google Scholar 

  11. Rasmussen CL, Sand FL, Hoffmann Frederiksen M, Kaae Andersen K, Kjaer SK. Does HPV status influence survival after vulvar cancer? Int J Cancer. 2018;142(6):1158–65.

    Article  CAS  PubMed  Google Scholar 

  12. Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond). 2006;110(5):525–41.

    Article  CAS  Google Scholar 

  13. Bergeron C, Ordi J, Schmidt D, Trunk MJ, Keller T, Ridder R, et al. Conjunctive p16INK4a testing significantly increases accuracy in diagnosing high-grade cervical intraepithelial neoplasia. Am J Clin Pathol. 2010;133(3):395–406.

    Article  PubMed  Google Scholar 

  14. Fernandez S, Wong S, Hui P, Buza N. The impact of P16 immunostain on the diagnostic agreement of cervical biopsies using the new WHO terminology. Modern Pathol. 2015;28:284a.

    Google Scholar 

  15. Klaes R, Benner A, Friedrich T, Ridder R, Herrington S, Jenkins D, et al. p16INK4a immunohistochemistry improves interobserver agreement in the diagnosis of cervical intraepithelial neoplasia. Am J Surg Pathol. 2002;26(11):1389–99.

    Article  PubMed  Google Scholar 

  16. Ezaldein H, Lott JP, McNiff JM, Hui P, Buza N, Ko CJ. Grading of atypia in genital skin lesions: routine microscopic evaluation and use of p16 immunostaining. J Cutan Pathol. 2015;42(8):519–26.

    Article  PubMed  Google Scholar 

  17. Tsoumpou I, Arbyn M, Kyrgiou M, Wentzensen N, Koliopoulos G, Martin-Hirsch P, et al. p16(INK4a) immunostaining in cytological and histological specimens from the uterine cervix: a systematic review and meta-analysis. Cancer Treat Rev. 2009;35(3):210–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Agoff SN, Lin P, Morihara J, Mao C, Kiviat NB, Koutsky LA. p16(INK4a) expression correlates with degree of cervical neoplasia: a comparison with Ki-67 expression and detection of high-risk HPV types. Mod Pathol. 2003;16(7):665–73.

    Article  PubMed  Google Scholar 

  19. Mazoujian G, Pinkus GS, Haagensen DE Jr. Extramammary Paget’s disease--evidence for an apocrine origin. An immunoperoxidase study of gross cystic disease fluid protein-15, carcinoembryonic antigen, and keratin proteins. Am J Surg Pathol. 1984;8(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  20. Goldblum JR, Hart WR. Vulvar Paget’s disease: a clinicopathologic and immunohistochemical study of 19 cases. Am J Surg Pathol. 1997;21(10):1178–87.

    Article  CAS  PubMed  Google Scholar 

  21. Shaco-Levy R, Bean SM, Vollmer RT, Papalas JA, Bentley RC, Selim MA, et al. Paget disease of the vulva: a histologic study of 56 cases correlating pathologic features and disease course. Int J Gynecol Pathol. 2010;29(1):69–78.

    Article  PubMed  Google Scholar 

  22. Zeng HA, Cartun R, Ricci A Jr. Potential diagnostic utility of CDX-2 immunophenotyping in extramammary Paget’s disease. Appl Immunohistochem Mol Morphol. 2005;13(4):342–6.

    Article  CAS  PubMed  Google Scholar 

  23. Nowak MA, Guerriere-Kovach P, Pathan A, Campbell TE, Deppisch LM. Perianal Paget’s disease: distinguishing primary and secondary lesions using immunohistochemical studies including gross cystic disease fluid protein-15 and cytokeratin 20 expression. Arch Pathol Lab Med. 1998;122(12):1077–81.

    CAS  PubMed  Google Scholar 

  24. Brown HM, Wilkinson EJ. Uroplakin-III to distinguish primary vulvar Paget disease from Paget disease secondary to urothelial carcinoma. Hum Pathol. 2002;33(5):545–8.

    Article  CAS  PubMed  Google Scholar 

  25. Yanai H, Takahashi N, Omori M, Oda W, Yamadori I, Takada S, et al. Immunohistochemistry of p63 in primary and secondary vulvar Paget’s disease. Pathol Int. 2008;58(10):648–51.

    Article  PubMed  Google Scholar 

  26. Baine M, Hui P, Buza N. PAX-8, SOX10 and GATA-3 immunostains: friend or foe in the diagnosis of vulvar Paget disease? Mod Pathol. 2016;29(2):274A.

    Google Scholar 

  27. Morbeck D, Tregnago AC, Baiocchi G, Sacomani C, Peresi PM, Osorio CT, et al. GATA-3 expression in primary vulvar Paget disease: a potential pitfall leading to misdiagnosis of pagetoid urothelial intraepithelial neoplasia. Histopathology. 2017;70(3):435–41.

    Google Scholar 

  28. Sah SP, McCluggage WG. Florid vulval Paget disease exhibiting p16 immunoreactivity and mimicking classic VIN. Int J Gynecol Pathol. 2013;32(2):221–7.

    Article  CAS  PubMed  Google Scholar 

  29. Richter CE, Hui P, Buza N, Silasi DA, Azodi M, Santin AD, et al. HER-2/NEU overexpression in vulvar Paget disease: the Yale experience. J Clin Pathol. 2010;63(6):544–7.

    Article  CAS  PubMed  Google Scholar 

  30. Garganese G, Inzani F, Mantovani G, Santoro A, Valente M, Babini G, et al. The vulvar immunohistochemical panel (VIP) project: molecular profiles of vulvar Paget’s disease. J Cancer Res Clin Oncol. 2019;145(9):2211–25.

    Article  CAS  PubMed  Google Scholar 

  31. Plaza JA, Torres-Cabala C, Ivan D, Prieto VG. HER-2/neu expression in extramammary Paget disease: a clinicopathologic and immunohistochemistry study of 47 cases with and without underlying malignancy. J Cutan Pathol. 2009;36(7):729–33.

    Article  PubMed  Google Scholar 

  32. Liegl B, Horn LC, Moinfar F. Androgen receptors are frequently expressed in mammary and extramammary Paget’s disease. Mod Pathol. 2005;18(10):1283–8.

    Article  CAS  PubMed  Google Scholar 

  33. Diaz de Leon E, Carcangiu ML, Prieto VG, McCue PA, Burchette JL, To G, et al. Extramammary Paget disease is characterized by the consistent lack of estrogen and progesterone receptors but frequently expresses androgen receptor. Am J Clin Pathol. 2000;113(4):572–5.

    Article  CAS  PubMed  Google Scholar 

  34. Amezcua CA, Begley SJ, Mata N, Felix JC, Ballard CA. Aggressive angiomyxoma of the female genital tract: a clinicopathologic and immunohistochemical study of 12 cases. Int J Gynecol Cancer. 2005;15(1):140–5.

    Article  CAS  PubMed  Google Scholar 

  35. Granter SR, Nucci MR, Fletcher CD. Aggressive angiomyxoma: reappraisal of its relationship to angiomyofibroblastoma in a series of 16 cases. Histopathology. 1997;30(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  36. McCluggage WG, Connolly L, McBride HA. HMGA2 is a sensitive but not specific immunohistochemical marker of vulvovaginal aggressive angiomyxoma. Am J Surg Pathol. 2010;34(7):1037–42.

    Article  PubMed  Google Scholar 

  37. McCluggage WG. A review and update of morphologically bland vulvovaginal mesenchymal lesions. Int J Gynecol Pathol. 2005;24(1):26–38.

    PubMed  Google Scholar 

  38. Magro G, Righi A, Caltabiano R, Casorzo L, Michal M. Vulvovaginal angiomyofibroblastomas: morphologic, immunohistochemical, and fluorescence in situ hybridization analysis for deletion of 13q14 region. Hum Pathol. 2014;45(8):1647–55.

    Article  CAS  PubMed  Google Scholar 

  39. McCluggage WG, Ganesan R, Hirschowitz L, Rollason TP. Cellular angiofibroma and related fibromatous lesions of the vulva: report of a series of cases with a morphological spectrum wider than previously described. Histopathology. 2004;45(4):360–8.

    Article  CAS  PubMed  Google Scholar 

  40. Iwasa Y, Fletcher CD. Cellular angiofibroma: clinicopathologic and immunohistochemical analysis of 51 cases. Am J Surg Pathol. 2004;28(11):1426–35.

    Article  PubMed  Google Scholar 

  41. Ganesan R, McCluggage WG, Hirschowitz L, Rollason TP. Superficial myofibroblastoma of the lower female genital tract: report of a series including tumours with a vulval location. Histopathology. 2005;46(2):137–43.

    Article  CAS  PubMed  Google Scholar 

  42. McCluggage WG. Recent developments in vulvovaginal pathology. Histopathology. 2009;54(2):156–73.

    Article  CAS  PubMed  Google Scholar 

  43. Parham DM, Barr FG. Classification of rhabdomyosarcoma and its molecular basis. Adv Anat Pathol. 2013;20(6):387–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Houreih MA, Lin AY, Eyden B, Menasce LP, Harrison J, Jones D, et al. Alveolar rhabdomyosarcoma with neuroendocrine/neuronal differentiation: report of 3 cases. Int J Surg Pathol. 2009;17(2):135–41.

    Article  PubMed  Google Scholar 

  45. McCluggage WG, Sumathi VP, Nucci MR, Hirsch M, Dal Cin P, Wells M, et al. Ewing family of tumours involving the vulva and vagina: report of a series of four cases. J Clin Pathol. 2007;60(6):674–80.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Howitt BE, Kelly P, McCluggage WG. Pathology of neuroendocrine tumours of the female genital tract. Curr Oncol Rep. 2017;19(9):59.

    Article  PubMed  Google Scholar 

  47. Hierro I, Blanes A, Matilla A, Munoz S, Vicioso L, Nogales FF. Merkel cell (neuroendocrine) carcinoma of the vulva. A case report with immunohistochemical and ultrastructural findings and review of the literature. Pathol Res Pract. 2000;196(7):503–9.

    Article  CAS  PubMed  Google Scholar 

  48. Gupta D, Malpica A, Deavers MT, Silva EG. Vaginal melanoma: a clinicopathologic and immunohistochemical study of 26 cases. Am J Surg Pathol. 2002;26(11):1450–7.

    Article  PubMed  Google Scholar 

  49. Carleton C, Hoang L, Sah S, Kiyokawa T, Karamurzin YS, Talia KL, et al. A detailed immunohistochemical analysis of a large series of cervical and vaginal gastric-type adenocarcinomas. Am J Surg Pathol. 2016;40(5):636.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kojima A, Mikami Y, Sudo T, Yamaguchi S, Kusanagi Y, Ito M, et al. Gastric morphology and immunophenotype predict poor outcome in mucinous adenocarcinoma of the uterine cervix. Am J Surg Pathol. 2007;31(5):664–72.

    Article  PubMed  Google Scholar 

  51. Park KJ, Kiyokawa T, Soslow RA, Lamb CA, Oliva E, Zivanovic O, et al. Unusual endocervical adenocarcinomas: an immunohistochemical analysis with molecular detection of human papillomavirus. Am J Surg Pathol. 2011;35(5):633–46.

    Article  PubMed  Google Scholar 

  52. Lu S, Shen D, Zhao Y, Kang N, Wang X. Primary endocervical gastric-type adenocarcinoma: a clinicopathologic and immunohistochemical analysis of 23 cases. Diagn Pathol. 2019;14(1):72.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mikami Y, Minamiguchi S, Teramoto N, Nagura M, Haga H, Konishi I. Carbonic anhydrase type IX expression in lobular endocervical glandular hyperplasia and gastric-type adenocarcinoma of the uterine cervix. Pathol Res Pract. 2013;209(3):173–8.

    Article  CAS  PubMed  Google Scholar 

  54. Pors J, Segura S, Cheng A, Ji JX, Tessier-Cloutier B, Cochrane D, et al. Napsin-A and AMACR are superior to HNF-1beta in distinguishing between mesonephric carcinomas and clear cell carcinomas of the gynecologic tract. Appl Immunohistochem Mol Morphol. 2020;28:593–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stolnicu S, Barsan I, Hoang L, Patel P, Chiriboga L, Terinte C, et al. Diagnostic algorithmic proposal based on comprehensive immunohistochemical evaluation of 297 invasive endocervical adenocarcinomas. Am J Surg Pathol. 2018;42(8):989–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Houghton O, Jamison J, Wilson R, Carson J, McCluggage WG. p16 Immunoreactivity in unusual types of cervical adenocarcinoma does not reflect human papillomavirus infection. Histopathology. 2010;57(3):342–50.

    Article  PubMed  Google Scholar 

  57. Goyal A, Yang B. Differential patterns of PAX-8, p16, and ER immunostains in mesonephric lesions and adenocarcinomas of the cervix. Int J Gynecol Pathol. 2014;33(6):613–9.

    Google Scholar 

  58. Kenny SL, McBride HA, Jamison J, McCluggage WG. Mesonephric adenocarcinomas of the uterine cervix and corpus: HPV-negative neoplasms that are commonly PAX-8, CA125, and HMGA2 positive and that may be immunoreactive with TTF1 and hepatocyte nuclear factor 1-beta. Am J Surg Pathol. 2012;36(6):799–807.

    Google Scholar 

  59. Pors J, Cheng A, Leo JM, Kinloch MA, Gilks B, Hoang L. A comparison of GATA-3, TTF1, CD10, and calretinin in identifying mesonephric and mesonephric-like carcinomas of the gynecologic tract. Am J Surg Pathol. 2018;42(12):1596–606.

    Google Scholar 

  60. Roma AA, Goyal A, Yang B. Differential expression patterns of GATA-3 in uterine mesonephric and nonmesonephric lesions. Int J Gynecol Pathol. 2015;34(5):480–6.

    Google Scholar 

  61. Howitt BE, Emori MM, Drapkin R, Gaspar C, Barletta JA, Nucci MR, et al. GATA-3 is a sensitive and specific marker of benign and malignant mesonephric lesions in the lower female genital tract. Am J Surg Pathol. 2015;39(10):1411–9.

    Google Scholar 

  62. Baak JP, van Diermen B, Steinbakk A, Janssen E, Skaland I, Mutter GL, et al. Lack of PTEN expression in endometrial intraepithelial neoplasia is correlated with cancer progression. Hum Pathol. 2005;36(5):555–61.

    Article  CAS  PubMed  Google Scholar 

  63. Quick CM, Laury AR, Monte NM, Mutter GL. Utility of PAX2 as a marker for diagnosis of endometrial intraepithelial neoplasia. Am J Clin Pathol. 2012;138(5):678–84.

    Article  PubMed  Google Scholar 

  64. Monte NM, Webster KA, Neuberg D, Dressler GR, Mutter GL. Joint loss of PAX2 and PTEN expression in endometrial precancers and cancer. Cancer Res. 2010;70(15):6225–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rewcastle E, Varhaugvik AE, Gudlaugsson E, Steinbakk A, Skaland I, van Dierman B, et al. Assessing the prognostic value of PAX2 and PTEN in endometrial carcinogenesis. Endocr Relat Cancer. 2018;25(12):981–91.

    Article  CAS  PubMed  Google Scholar 

  66. Travaglino A, Raffone A, Saccone G, Mascolo M, Pignatiello S, Mollo A, et al. PTEN immunohistochemistry in endometrial hyperplasia: which are the optimal criteria for the diagnosis of precancer? APMIS. 2019;127(4):161–9.

    Article  CAS  PubMed  Google Scholar 

  67. Travaglino A, Raffone A, Saccone G, Mascolo M, D’Alessandro P, Arduino B, et al. Nuclear expression of β-catenin in endometrial hyperplasia as a marker of premalignancy. APMIS. 2019;127(11):699–709.

    Article  CAS  PubMed  Google Scholar 

  68. Trabzonlu L, Muezzinoglu B, Corakci A. BCL-2 and PAX2 expressions in EIN which had been previously diagnosed as non-atypical hyperplasia. Pathol Oncol Res. 2019;25(2):471–6.

    Article  CAS  PubMed  Google Scholar 

  69. Kamoi S, Al Juboury MI, Akin MR, Sliverberg SG. Immunohistochemical staining in the distinction between primary endometrial and endocervical adenocarcinomas: another viewpoint. Int J Gynecol Pathol. 2002;21(3):217–23.

    Article  PubMed  Google Scholar 

  70. McCluggage WG, Jenkins D. p16 immunoreactivity may assist in the distinction between endometrial and endocervical adenocarcinoma. Int J Gynecol Pathol. 2003;22(3):231–5.

    Article  CAS  PubMed  Google Scholar 

  71. Jones MW, Onisko A, Dabbs DJ, Elishaev E, Chiosea S, Bhargava R. Immunohistochemistry and HPV in situ hybridization in pathologic distinction between endocervical and endometrial adenocarcinoma. A comparative tissue microarray study of 76 tumors. Int J Gynecol Cancer. 2013;23(2):380–4.

    Article  PubMed  Google Scholar 

  72. Euscher ED, Malpica A, Deavers MT, Silva EG. Differential expression of WT-1 in serous carcinoma in the peritoneum with or without associated serous carcinoma in endometrial polyps. Am J Surg Pathol. 2005;29(8):1074–8.

    Article  PubMed  Google Scholar 

  73. Mikami Y, McCluggage WG. Endocervical glandular lesions exhibiting gastric differentiation; an emerging spectrum of benign, premalignant, and malignant lesion. Adv Anat Pathol. 2013;20(4):227–37.

    Article  CAS  PubMed  Google Scholar 

  74. Rabban JT, McAlhany S, Lerwill MF, Grenert JP, Zaloudek CJ. PAX2 distinguishes benign mesonephric and Mullerian glandular lesions of the cervix from endocervical adenocarcinoma, including minimal deviation adenocarcinoma. Am J Surg Pathol. 2010;34(2):137–46.

    Article  PubMed  Google Scholar 

  75. Qui W, Mittal K. Comparison of morphologic and immunohistochemical features of cervical microglandular hyperplasia with low-grade mucinous adenocarcinoma of the endometrium. Int J Gynecol Pathol. 2003;22(3):261–5.

    Article  Google Scholar 

  76. Da Forno PD, McGregor AH, Brown LR. Microglandular hyperplasia: a pitfall in the diagnosis of microglandular type endometrioid adenocarcinoma. Histopathology. 2005 Mar;46(3):346–8.

    Article  PubMed  Google Scholar 

  77. Zaloudek C, Hayashi GM, Ryan IP, Powell CB, Miller TR. Microglandular adenocarcinoma of the endometrium: a form of mucinous adenocarcinoma that may be confused with microglandular hyperplasia of the cervix. Int J Gynecol Pathol. 1997;16(1):52–9.

    Article  CAS  PubMed  Google Scholar 

  78. Zamecnik M, Skalova A, Oparny V. Microglandular adenocarcinoma of the uterus mimicking microglandular cervical hyperplasia. Ann Diagn Pathol. 2003;7(3):180–6.

    Article  PubMed  Google Scholar 

  79. Pavlakis K, Vrekoussis T, Messinin I, Voulgaris Z, Chrysanthakis D, Yiannou P, et al. Mucinous epithelial lesions in endometrial curettage material: a diagnostic challenge. Appl Immunohistochem Mol Morphol. 2012;20(6):607–13.

    Article  CAS  PubMed  Google Scholar 

  80. Stewart CR, Crook ML. PAX2 and cyclin D1 expression in the distinction between cervical microglandular hyperplasia and endometrial microglandular-like carcinoma: a comparison with p16, vimentin and Ki-67. Int J Gynecol Pathol. 2015;34(1):90–100.

    Article  CAS  PubMed  Google Scholar 

  81. Hong W. Human Pathology, 2015;46:1000–005.

    Google Scholar 

  82. Malpica A. How to approach the many faces of endometrial cancer. Mod Pathol. 2016;29(Suppl 1):S29–44.

    Article  CAS  PubMed  Google Scholar 

  83. Bartosch C, Lopes JM, Oliva E. Endometrial carcinomas: a review emphasizing overlapping and distinctive morphological and immunohistochemical features. Adv Anat Pathol. 2011;18(6):415–37.

    Article  PubMed  Google Scholar 

  84. Gatium S, Matia-Guiu X. Practical issues in the diagnosis of serous carcinoma of the endometrium. Mod Pathol. 2016;29(Suppl 1):S45–58.

    Google Scholar 

  85. Garg K, Soslow RA. Strategies for distinguishing low-grade endometrioid and serous carcinomas of the endometrium. Adv Anat Pathol. 2012;19(1):1–10.

    Article  PubMed  Google Scholar 

  86. Wei JJ, Paintal S, Keh P. Histologic and immunohistochemical analyses of endometrial carcinomas. Arch Pathol Lab Med. 2013;137(11):1574–83.

    Article  PubMed  Google Scholar 

  87. Fadare O, Parkash V, Gwin K, Hanley KZ, Jarboe EA, Liang SX, et al. Utility of α-methylacyl-coenzyme-A racemase (p504s) immunohistochemistry in distinguishing endometrial clear cell carcinomas from serous and endometrioid carcinomas. Hum Pathol. 2013;44(12):2814–21.

    Article  CAS  PubMed  Google Scholar 

  88. Fadare O, Desouki MM, Gwin K, Hanley KZ, Jarboe EA, Liang SX, et al. Frequent expression of Napsin A in clear cell carcinoma of the endometrium. Am J Surg Pathol. 2014;38(2):189–96.

    Google Scholar 

  89. Hoang LN, Han G, McConechy M, Lau S, Chow C, Gilks CB, et al. Immunohistochemical characterization of prototypical endometrial clear cell carcinoma-diagnostic utility of HNF-1β and oestrogen receptor. Histopathology. 2014;64(4):585–96.

    Article  PubMed  Google Scholar 

  90. Han G, Soslow RA, Wethington S, Levine DA, Bogomolniy F, Clement PB, et al. Endometrial carcinomas with clear cells: a study of a heterogeneous group of tumors including interobserver variability, mutation analysis and immunohistochemistry with HNF-1β. Int J Gynecol Pathol. 2015;34(4):323–33.

    Article  CAS  PubMed  Google Scholar 

  91. Lim D, Ip PP, Cheung AN, Kiyokawa T, Oliva E. Immunohistochemical comparison of ovarian and uterine endometrioid carcinoma, endometrioid carcinoma with clear cell change, and clear cell carcinoma. Am J Surg Pathol. 2015;39(8):1061–9.

    Article  PubMed  Google Scholar 

  92. Fadare O, Liang SX. Diagnostic utility of hepatocyte nuclear factor 1-β immunoreactivity in endometrial clear cell carcinoma. Appl Immunohistochem Mol Morphol. 2012;20(6):580–7.

    Article  CAS  PubMed  Google Scholar 

  93. Ravishankar S, Malpica A, Ramalingam P, Euscher ED. Yolk sac tumor in extragonadal sites. Still a diagnostic challenge. Am J Surg Pathol. 2017;41(1):1–11.

    Article  PubMed  Google Scholar 

  94. Euscher ED, Bassett R, Duose DY, Lan C, Wistuba I, Ramondetta L, et al. Mesonephric-like carcinoma of the endometrium. A subset of endometrial carcinoma with an aggressive behavior. Am J Surg Pathol. 2020;44(4):429–43.

    Article  PubMed  Google Scholar 

  95. Pocrnich CE, Ramalingam P, Euscher ED, Malpica A. Neuroendocrine carcinoma of the endometrium: a clinicopathologic study of 25 cases. Am J Surg Pathol. 2016;40(5):577–86.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Altrabulsi B, Malpica A, Deavers MT, Bodurka DC, Broaddus R, Silva EG. Undifferentiated carcinoma of the endometrium. Am J Surg Pathol. 2005;29(10):1316–21.

    Article  PubMed  Google Scholar 

  97. Tamura T, Jobo T, Watanabe J, Kanai T, Kuramoto H. Neuroendocrine features in poorly differentiated endometrioid adenocarcinomas of the endometrium. Int J Gynecol Cancer. 2006;16(2):821–6.

    Article  CAS  PubMed  Google Scholar 

  98. Ramalingam P, Masand RP, Euscher ED, Malpica A. Undifferentiated carcinoma of the endometrium: an expanded immunohistochemical analysis including PAX-8 and basal-like carcinoma surrogate markers. Int J Gynecol Pathol. 2016;35(5):410–8.

    Article  CAS  PubMed  Google Scholar 

  99. Ramalingam P, Croce S, McCluggage WG. Loss of expression of SMARCA4 (BRG1), SMARCA2 (BRM) and SMARCB1 (INI1) in undifferentiated carcinoma of the endometrium is not uncommon and is not always associated with rhabdoid morphology. Histopathology. 2017;70(3):359–66.

    Article  PubMed  Google Scholar 

  100. Stewart CJ, Crook ML. SWI/SNF complex deficiency and mismatch repair protein expression in undifferentiated and dedifferentiated endometrioid carcinoma. Pathology. 2015;47(5):439–45.

    Article  CAS  PubMed  Google Scholar 

  101. Mittal K, Demopoulos RI. MIB-1 (Ki-67), p53, estrogen receptor and progesterone receptor expression in uterine smooth muscle tumors. Hum Pathol. 2001;32(9):984–7.

    Article  CAS  PubMed  Google Scholar 

  102. Atkins KA, Arronte N, Darus CJ, Rice LW. The use of p16 in enhancing the histologic classification of uterine smooth muscle tumors. Am J Surg Pathol. 2008;32(1):98–102.

    Article  PubMed  Google Scholar 

  103. Ip PP, Cheung AJ, Clement PB. Uterine smooth muscle tumors of uncertain malignant potential (STUMP). A clinicopathologic analysis of 16 cases. Am J Surg Pathol. 2009;33(7):992–1005.

    Article  PubMed  Google Scholar 

  104. Yanai H, Wani Y, Notohara K, Takada S, Yoshino T. Uterine leiomyosarcoma arising in leiomyoma: clinicopathological study of four cases and literature review. Pathol Int. 2010;60(7):506–9.

    Article  PubMed  Google Scholar 

  105. Rubisz P, Ciebiera M, Hirnle L, Zgliczynska M, Lozinski T, Dziegiel P, et al. The usefulness of immunohistochemistry in the differential diagnosis of lesions originating from the myometrium. Int J Mol Sci. 2019;20:1136.

    Article  CAS  PubMed Central  Google Scholar 

  106. Ip PP, Lim D, Cheung AN, Oliva E. Immunoexpression of p16 in uterine leiomyomas with infarct-type necrosis: an analysis of 35 cases. Histopathology. 2017;71(5):743–50.

    Article  PubMed  Google Scholar 

  107. Joehlin-Price AS, Garg K. Uterine mesenchymal tumors: hereditary aspects. Adv Anat Pathol. 2018;25(2):96–105.

    Article  PubMed  Google Scholar 

  108. Miettinen M, Felisiak-Golabek A, Wasag B, Chmara M, Wang Z, Butzow R, et al. Fumarase-deficient uterine leiomyomas. An immunohistochemical, molecular genetic and clinicopathologic study of 86 cases. Am J Surg Pathol. 2016;40(12):1661–9.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Joseph NM, Soloman DA, Frizzell N, Rabban JT, Zaloudek C, Garg K. Morphology and immunohistochemistry for 2SC and FH aid in detection of Fumarate Hydratase gene aberrations in uterine leiomyomas from young patients. Am J Surg Pathol. 2015;39(11):1529–39.

    Article  PubMed  Google Scholar 

  110. Chu PG, Arber DA, Weiss LM, Chang KL. Utility of CD10 in distinguishing between endometrial stromal sarcoma and uterine smooth muscle tumors: an immunohistochemical comparison of 34 cases. Mod Pathol. 2001;14(5):465–71.

    Article  CAS  PubMed  Google Scholar 

  111. Nucci MR, O’Connell JT, Huettner PC, Cviko A, Sun D, Quade BJ. h-Caldesmon expression effectively distinguishes endometrial stromal tumors from uterine smooth muscle tumors. Am J Surg Pathol. 2001;25(4):455–63.

    Article  CAS  PubMed  Google Scholar 

  112. Rush DS, Tan J, Baergen RN, Soslow RA. h-Caldesmon, a novel smooth muscle-specific antibody, distinguishes between cellular leiomyomas and endometrial stromal sarcoma. Am J Surg Pathol. 2001;25(2):253–8.

    Article  CAS  PubMed  Google Scholar 

  113. Parra-Herran C, Howitt BE. Uterine mesenchymal tumors: update on classification, staging, and molecular features. Surg Pathol Clin. 2019;12(2):363–96.

    Article  PubMed  Google Scholar 

  114. Lee CH, Marino-Enriquez A, Ou W, Zhu M, Ali RH, Chiang S, et al. The clinicopathologic features of YWHAE-FAM22 endometrial stromal sarcomas: a histologically high-grade and clinically aggressive tumor. Am J Surg Pathol. 2012;36(5):641–53.

    Article  PubMed  Google Scholar 

  115. Croce S, Hostein I, Ribeiro A, Garbay D, Velasco V, Stoeckle E, et al. YWHAE rearrangement identified by FISH and RT-PCR in endometrial stromal sarcomas: genetic and pathological correlations. Mod Pathol. 2013;26(10):1390–400.

    Article  CAS  PubMed  Google Scholar 

  116. Isphording A, Ali R, Irving J, Goytain A, Nelnyk N, Hoang LN, et al. YWHAE-FAM22 endometrial stromal sarcoma: diagnosis by reverse transcription-polymerase chain reaction in formalin-fixed, paraffin-embedded tumor. Hum Pathol. 2013;44(5):837–43.

    Article  CAS  PubMed  Google Scholar 

  117. Momeni-Boroujeni A, Chiang S. Uterine mesenchymal tumors: recent advances. Histopathology. 2020;76(1):64–75.

    Article  PubMed  Google Scholar 

  118. Lewis N, Soslow RA, Delair DF, Park KJ, Murali R, Hollmann TJ, et al. ZC3H7B-BCOR high-grade endometrial stromal sarcomas: a report of 17 cases of a newly defined entity. Mod Pathol. 2018;31(4):674–84.

    Article  PubMed  Google Scholar 

  119. Hoang LN, Aneja A, Conlon N, Delair DF, Middha S, Benayed R, et al. Novel high grade endometrial stromal sarcoma: a morphologic mimicker of myxoid leiomyosarcoma. Am J Surg Pathol. 2017;41(1):12–24.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Lee CH, Ali R, Rouzbahman M, Marino-Enriquez A, Zhu M, et al. Cyclin D1 as a diagnostic immunomarker for endometrial stromal sarcoma with YWHAE-FAM22 rearrangement. Am J Surg Pathol. 2012;36(10):1562–70.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Chiang S, Lee CH, Stewart CJR, Oliva E, Hoang LN, Ali RH, et al. BCOR is a robust diagnostic immunohistochemical marker of genetically diverse high grade endometrial stromal sarcoma, including tumors exhibiting variant morphology. Mod Pathol. 2017;30(9):1251–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nucci MR. Practical issues related to uterine pathology: endometrial stromal tumors. Mod Pathol. 2016;29(Suppl 1):S92–103.

    Article  PubMed  Google Scholar 

  123. Rizeq MN, van de Rijn M, Hendrickson MR, Rouse RV. Comparative immunohistochemical study of uterine smooth muscle neoplasms with emphasis on the epithelioid variant. Hum Pathol. 1994;25(7):671–7.

    Article  CAS  PubMed  Google Scholar 

  124. Oliva E. Practical issues in uterine pathology from banal to bewildering: the remarkable spectrum of smooth muscle neoplasia. Mod Pathol. 2016;29(Suppl 1):S104–20.

    Article  CAS  PubMed  Google Scholar 

  125. Kalhor N, Ramirez P, Deavers MT, Malpica A, Silva EG. Immunohistochemical studies of trophoblastic tumors. Am J Surg Pathol. 2009;33(4):633–8.

    Article  PubMed  Google Scholar 

  126. Folpe AL, Mentzel T, Lehr HA, Fisher C, Balzer BL, Weiss SW. Perivascular epithelioid cell neoplasms of soft tissue and gynecologic origin: clinicopathologic study of 26 cases and review of the literature. Am J Surg Pathol. 2005;29(12):1558–75.

    Article  PubMed  Google Scholar 

  127. Schoolmeester JK, Howitt BE, Hirsch MS, Dal Cin P, Quade BJ, Nucci MR. Perivascular epithelioid cell neoplasms (PEComa) of the gynecologic tract. Clinicopathologic and immunohistochemical characterization of 16 cases. Am J Surg Pathol. 2014;38(2):176–88.

    Article  PubMed  Google Scholar 

  128. Conlon N, Solsow RA, Murali R. Perivascular epithelioid tumors (PEComas) of the gynecologic tract. J Clin Pathol. 2015;68(6):418–26.

    Article  PubMed  Google Scholar 

  129. Silva EG, Deavers MT, Bodurka DC, Malpica A. Uterine epithelioid leiomyosarcomas with clear cells. Reactivity with HMB-45 and the concept of PEComa. Am J Surg Pathol. 2004;28(2):244–9.

    Article  PubMed  Google Scholar 

  130. Rao Q, Cheng L, Xia Q, Liu B, Li L, Shi QL, Shi SS. Cathepsin K expression in a wide spectrum of perivascular epithelioid cell neoplasms (PEComas); a clinicopathological study emphasizing extrarenal PEComas. Histopathology. 2013;62(4):642–50.

    Article  PubMed  Google Scholar 

  131. Bennett JA, Braga AC, Pinto A, Van de Vijver K, Cornejo K, Pesci A, et al. Uterine PEComas. A morphologic, immunohistochemical, and molecular analysis of 32 tumors. Am J Surg Pathol. 2018;42(10):1370–83.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Schoolmeester JK, Dao LN, Sukov WR, Wang L, Park KJ, Murali R. TFE3 translocation-associated perivascular epithelioid cell neoplasm (PEComa) of the gynecologic tract. Morphology, immunophenotype, differential diagnosis. Am J Surg Pathol. 2015;39(3):394–404.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Parra-Herran C, Quick C, Howitt BE, Dal Cin P, Quade BJ, Nucci MR. Inflammatory myofibroblastic tumor of the uterus: clinical and pathologic review of 10 cases including a subset with aggressive clinical course. Am J Surg Pathol. 2015;39(2):157–68.

    Article  PubMed  Google Scholar 

  134. Parra-Herran C, Schoolmeester JK, Yuan L, Dal Cin P, Fletcher DM, Quade BJ. Myxoid leiomyosarcoma of the uterus. A clinicopathologic analysis of 30 cases and review of the literature with reappraisal of its distinction from other uterine myxoid mesenchymal neoplasms. Am J Surg Pathol. 2016;40(3):285–301.

    Article  PubMed  Google Scholar 

  135. Rabban JT, Zaloudek CJ, Shekitka KM, Tavassoli FA. Inflammatory myofibroblastic tumor of the uterus. A clinicopathologic study of 6 cases emphasizing distinction from aggressive mesenchymal tumors. Am J Surg Pathol. 2005;29(10):1348–55.

    Article  PubMed  Google Scholar 

  136. Haimes JD, Stewart CR, Kudlow BA, Culver BP, Meng B, Koay E. Uterine inflammatory myofibroblastic tumors frequently harbor ALK fusions with IGFBP5 and THBS1. Am J Surg Pathol. 2017;41(6):773–80.

    Article  PubMed  Google Scholar 

  137. Bennett JA, Nardi V, Rouzbahman M, Morales-Oyarvide V, Nielsen GP, Oliva E. Inflammatory myofibroblastic tumor of the uterus: a clinicopathological, immunohistochemical, and molecular analysis of 13 cases highlighting their broad morphologic spectrum. Mod Pathol. 2017;30(10):1489–503.

    Article  CAS  PubMed  Google Scholar 

  138. Mohammad N, Haimes JD, Mishkin S, Kudlow BA, Leong MY, Chew SH. ALK is a specific diagnostic marker for inflammatory myofibroblastic tumor of the uterus. Am J Surg Pathol. 2018;42(10):1353–9.

    Article  PubMed  Google Scholar 

  139. Arias-Stella JA, Benayed R, Oliva E, Young RH, Hoang LN, Lee CH. Novel PLAG1 gene rearrangement distinguishes a subset of uterine myxoid leiomyosarcoma from other uterine myxoid mesenchymal tumors. Am J Surg Pathol. 2019;43(3):382–388.32.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Chiang S, Cotzia P, Hyman DM, Drilon A, Tap WD, Zhang L, et al. NTRK fusions define a novel uterine sarcoma subtype with features of fibrosarcoma. Am J Surg Pathol. 2018;42(6):791–8.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Croce S, Hostein I, Longacre TA, Mills AM, Perot G, Devouassoux-Shisheboran M, et al. Uterine and vaginal sarcomas resembling fibrosarcoma; a clinicopathological and molecular analysis of 13 cases showing common NTRK-rearrangements and the description of a COLAA1-PDGFB fusion novel to uterine neoplasms. Mod Pathol. 2019 Jun;32(7):1008–22.

    Article  CAS  PubMed  Google Scholar 

  142. Hodgson A, Put C, Djordjevic B, Turashvili G. NTRK-rearranged cervical sarcoma: expanding the clinicopathologic spectrum. Int J Gynecol Pathol. 2020;40(3):7.

    Google Scholar 

  143. Rabban JT, Devine P, Sangoi AR, Poder L, Alvarez E, Davis JL, et al. NTRK fusion cervical sarcoma: a report of 3 cases, emphasizing morphological and immunohistochemical distinction from other uterine sarcomas, including adenosarcoma. Histopathology. 2020;77:100–11.

    Article  PubMed  Google Scholar 

  144. Gatalica Z, Xiu J, Swensen J, Vranic S. Molecular characterization of cancers with NTRK gene fusions. Mod Pathol. 2019;32(1):147–53.

    Article  CAS  PubMed  Google Scholar 

  145. Visvanathan K, Shaw P, May BJ, Bahadirli-Talbott A, Kaushiva A, Risch H, et al. Fallopian tube lesions in women at high risk for ovarian cancer: a multicenter study. Cancer Prev Res (Phila). 2018;11(11):697–706.

    Article  CAS  Google Scholar 

  146. Rabban JT, Garg K, Crawford B, Chen L, Zaloudek CJ. Early detection of high-grade tubal serous carcinoma in women at low risk for hereditary breast and ovarian cancer syndrome by systematic examination of fallopian tubes incidentally removed during benign surgery. Am J Surg Pathol. 2014;38(6):729–42.

    Article  PubMed  Google Scholar 

  147. Visvanathan K, Vang R, Shaw P, Gross A, Soslow R, Parkash V, et al. Diagnosis of serous tubal intraepithelial carcinoma based on morphologic and immunohistochemical features: a reproducibility study. Am J Surg Pathol. 2011;35(12):1766–75.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Vang R, Visvanathan K, Gross A, Maambo E, Gupta M, Kuhn E, et al. Validation of an algorithm for the diagnosis of serous tubal intraepithelial carcinoma. Int J Gynecol Pathol. 2012;31(3):243–53.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Malpica A, Deavers MT, Lu K, Bodurka DC, Atkinson EN, Gershenson DM, et al. Grading ovarian serous carcinoma using a two-tier system. Am J Surg Pathol. 2004;28(4):496–504.

    Article  PubMed  Google Scholar 

  150. O’Neill CJ, Deavers MT, Malpica A, Foster H, McCluggage WG. An immunohistochemical comparison between low-grade and high-grade ovarian serous carcinoma significantly higher expression of p53, MIB1, BCL2, Her-2/neu and C-KIT in high grade neoplasms. Am J Surg Pathol. 2005;29(8):1034–41.

    Article  PubMed  Google Scholar 

  151. O’Neill CJ, McBride HA, Connolly LE, Deavers MT, Malpica A, McCluggage WG. High-grade ovarian serous carcinoma exhibits significantly higher p16 expression than low-grade serous carcinoma and serous borderline tumour. Histopathology. 2007;50(6):773–9.

    Article  PubMed  Google Scholar 

  152. Prat J. Ovarian carcinomas, including secondary tumors: diagnostically challenging areas. Mod Pathol. 2005;18(Suppl 2):S99–111.

    Article  PubMed  Google Scholar 

  153. Strickland S, Wasserman JK, Giassi A, Djordjevic B, Parra-Herran C. Immunohistochemistry in the diagnosis of mucinous neoplasms involving the ovary: the added value of SATB2 and biomarker discovery through protein expression database mining. Int J Gynecol Pathol. 2016;35(3):191–208.

    Article  CAS  PubMed  Google Scholar 

  154. Fraggetta F, Pelosi G, Cafici A, Scollo P, Nuciforo P, Viale G. CDX2 immunoreactivity in primary and metastatic ovarian mucinous tumors. Virchows Arch. 2003;443(6):782–6.

    Article  CAS  PubMed  Google Scholar 

  155. Vang R, Gown AM, Barry TS, Wheeler DT, Ronnett BM. Ovarian atypical proliferative (borderline) mucinous tumors: gastrointestinal and seromucinous (endocervical-like) types are immunophenotypically distinctive. Int J Gynecol Pathol. 2006;25(1):83–9.

    Article  PubMed  Google Scholar 

  156. Ramalingam P. Morphologic, immunophenotypic, and molecular features of epithelial ovarian cancer. Oncology (Williston Park). 2016;30(2):166–76.

    Google Scholar 

  157. Euscher ED, Malpica A, Deavers MT, Silva EG. Differential expression of WT-1 in serous carcinomas in the peritoneum with or without associated serous carcinoma in endometrial polyps. Am J Surg Pathol. 2005;29(8):1074–8.

    Article  PubMed  Google Scholar 

  158. Yasunga M, Ohishi Y, Oda Y, Misumi M, Iwasa A, Kurihara S, et al. Immunohistochemical characterization of Mullerian mucinous borderline tumors: possible histogenetic link with serous borderline tumors and low-grade endometrioid tumors. Hum Pathol. 2009;40(7):965–74.

    Article  Google Scholar 

  159. Laury AR, Perets R, Piao H, Krane JF, Barletta JA, French C, et al. A comprehensive analysis of PAX-8 expression in human epithelial tumors. Am J Surg Pathol. 2011;35(6):816–26.

    Google Scholar 

  160. Stewart CJ, Brennan BA, Chan T, Netreba J. WT1 expression in endometrioid ovarian carcinoma with and without associated endometriosis. Pathology. 2008;40(6):592–9.

    Article  CAS  PubMed  Google Scholar 

  161. Kobel M, Rahimi K, Rambau PF, Naugler C, LePage C, Meunier L, et al. An immunohistochemical algorithm for ovarian carcinoma typing. Int J Gynecol Pathol. 2016;35(5):430–41.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Fadare O, Zhao C, Khabele D, Parkash V, Quick CM, Gwin K, et al. Comparative analysis of Napsin A, alpha-methylacyl-coenzyme A racemase (AMACR, p504s) and hepatocyte nuclear factor 1 beta as diagnostic markers of ovarian clear cell carcinoma: an immunohistochemical study of 279 ovarian tumors. Pathology. 2015;47(2):105–11.

    Article  CAS  PubMed  Google Scholar 

  163. O’Keefe M, Longacre T, Kong C, Folkins A. Napsin A has utility in the diagnosis of clear cell carcinoma in the ovary but may be less valuable in the endometrium. Mod Pathol. 2015;28:300a-a.

    Google Scholar 

  164. Cuff J, Esheba GE, Soslow RA, Longacre TA. HNF1-beta expression in ovarian clear cell carcinoma. Mod Pathol. 2008;21:201a-a.

    Google Scholar 

  165. Rambau PF, McIntyre JB, Taylor J, Lee S, Ogilvie T, Sienko A, et al. Morphologic reproducibility, genotyping, and immunohistochemical profiling do not support a category of seromucinous carcinoma of the ovary. Am J Surg Pathol. 2017;41(5):685–95.

    Article  PubMed  Google Scholar 

  166. Taylor J, McCluggage WG. Ovarian seromucinous carcinoma. Report of a series of a newly categorized and uncommon neoplasm. Am J Surg Pathol. 2015;39(7):983–92.

    Article  PubMed  Google Scholar 

  167. Woodbeck R, Kelemen LE, Kobel M. Ovarian endometrioid carcinoma misdiagnosed as mucinous carcinoma: and underrecognized problem. Int J Gyencol Pathol. 2019;38(6):568–75.

    Article  CAS  Google Scholar 

  168. Ordi J, Schammel DP, Rasekh L, Tavassoli FA. Sertoliform endometrioid carcinomas of the ovary: a clinicopathologic and immunohistochemical study of 13 cases. Mod Pathol. 1999;12(10):933–40.

    CAS  PubMed  Google Scholar 

  169. Katoh T, Yasuda M, Hasegawa K, Kozawa E, Maniwa J, Sasano H. Estrogen-producing endometrioid adenocarcinoma resembling sex cord-stromal tumor of the ovary: a review of four postmenopausal cases. Diagn Pathol. 2012;7:164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Young RH. Ovarian sex cord-stromal tumors and their mimics. Pathology. 2018;50(1):5–15.

    Article  CAS  PubMed  Google Scholar 

  171. Hanley KZ, Mosunjac MB. Practical review of ovarian sex cord-stromal tumors. Surg Pathol Clin. 2019;12(2):587–620.

    Article  PubMed  Google Scholar 

  172. Nogales FF, Quinonez E, Lopez-Marin L, Dulcey I, Preda O. A diagnostic immunohistochemical panel for yolk sac (primitive endodermal) tumours based on an immunohistochemical comparison with the human yolk sac. Histopathology. 2014;65(1):51–9.

    Article  PubMed  Google Scholar 

  173. Rabban JT, Zaloudek CJ. A practical approach to immunohistochemical diagnosis of ovarian germ cell tumours and sex cord stromal tumours. Histopathology. 2013;62(1):71–88.

    Article  PubMed  Google Scholar 

  174. Nogales FF, Prat J, Schuldt M, Cruz-Viruel N, Kaur B, D’Angelo E, et al. Germ cell tumour growth patterns originating from clear cell carcinomas of the ovary and endometrium: a comparative immunohistochemical study favouring their origin from somatic stem cells. Histopathology. 2018;72(4):634–47.

    Article  PubMed  Google Scholar 

  175. Oliva E, Alvarez T, Young RH. Sertoli cell tumors of the ovary: a clinicopathologic and immunohistochemical study of 54 cases. Am J Surg Pathol. 2005;29(2):143–56.

    Article  PubMed  Google Scholar 

  176. McCluggage WG. Immunoreactivity of ovarian juvenile granulosa cell tumors with epithelial membrane antigen. Histopathology. 2005;46(2):235–6.

    Article  CAS  PubMed  Google Scholar 

  177. McCluggage WG, McKenna M, McBride HA. CD56 is a sensitive and diagnostically useful immunohistochemical marker of ovarian sex cord-stromal tumors. Int J Gynecol Pathol. 2007;26(3):322–7.

    Article  PubMed  Google Scholar 

  178. Zhao C, Barner R, Vinh TN, McManus K, Dabbs D, Vang R. SF-1 is a diagnostically useful immunohistochemical marker and comparable to other sex cord-stromal tumor markers for the differential diagnosis of ovarian sertoli cell tumor. Int J Gynecol Pathol. 2008;27(4):507–14.

    Article  CAS  PubMed  Google Scholar 

  179. Zhao C, Vinh TN, McManus K, Dabbs D, Barner R, Vang R. Identification of the most sensitive and robust immunohistochemical markers in different categories of ovarian sex cord-stromal tumors. Am J Surg Pathol. 2009;33(3):354–66.

    Article  PubMed  Google Scholar 

  180. Jones MW, Harri R, Dabbs DJ, Carter GJ. Immunohistochemical profile of steroid cell tumor of the ovary: a study of 14 cases and a review of the literature. Int J Gynecol Pathol. 2010;29(4):315–20.

    Article  PubMed  Google Scholar 

  181. Al-Agha OM, Huwait HF, Chow C, Yang W, Senz J, Kalloger SE, et al. FOXL2 is a sensitive and specific marker for sex cord-stromal tumors of the ovary. Am J Surg Pathol. 2011;35(4):484–94.

    Article  PubMed  Google Scholar 

  182. Stewart CJ, Alexiadis M, Crook ML, Fuller PJ. An immunohistochemical and molecular analysis of problematic and unclassified ovarian sex cord-stromal tumors. Hum Pathol. 2013;44(12):2774–81.

    Article  CAS  PubMed  Google Scholar 

  183. Microcystic stromal tumor. A distinctive ovarian sex cord-stromal neoplasm characterized by FOXL2, SF-1, WT-1, cyclin D1 and β-catenin nuclear expression and CTNNB1 mutations. Am J Surg Pathol. 2015;39(10):1420–6.

    Google Scholar 

  184. McCluggage WG, Oliva E, Connolly LE, McBride HA, Young RH. An immunohistochemical analysis of ovarian small cell carcinoma of hypercalcemic type. Int J Gynecol Pathol. 2004;23(4):330–6.

    Article  CAS  PubMed  Google Scholar 

  185. Conlon N, Silva A, Guerra E, Jelinic P, Schlappe BA, Olvera N, et al. Loss of SMARCA4 expression is both sensitive and specific for the diagnosis of small cell carcinoma of the ovary, hypercalcemic type. Am J Surg Pathol. 2016;40(3):395–403.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Euscher ED. Germ cell tumors of the female genital tract. Surg Pathol Clin. 2019;12(2):621–49.

    Article  PubMed  Google Scholar 

  187. Zaloudek CJ, Tavassoli FA, Norris HJ. Dysgerminoma with syncytiotrophoblastic giant cells. A histologically and clinically distinctive subtype of dysgerminoma. Am J Surg Pathol. 1981;5(4):361–7.

    Article  CAS  PubMed  Google Scholar 

  188. Hoei-Hansen CE, Kraggerud SM, Abeler VM, Kaern J, Rajpert-De Meyts E, Lothe RA. Ovarian dysgerminomas are characterized by frequent KIT mutations and abundant expression of pluripotency markers. Mol Cancer. 2007;6:12.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Iacobelli JF, Charles AK, Crook M, Stewart CJ. NUT protein immunoreactivity in ovarian germ cell tumours. Pathology. 2015;47(2):118–22.

    Article  CAS  PubMed  Google Scholar 

  190. Xiao GQ, Li F, Unger PD, Katerji H, Yang Q, McMahon L, et al. ZBTB16: a novel sensitive and specific biomarker for yolk sac tumor. Mod Pathol. 2016;29(6):591–8.

    Article  CAS  PubMed  Google Scholar 

  191. Nogales FF, Preda O, Nicolae A. Yolk sac tumours revisited. A review of their many faces and names. Histopathology. 2012;60(7):1023–33.

    Article  PubMed  Google Scholar 

  192. Nogales FF, Bergeron C, Carvia RE, Alvaro T, Fulwood HR. Ovarian endometrioid tumors with yolk sac tumor component, an unusual form of ovarian neoplasm. Analysis of six cases. Am J Surg Pathol. 1996;20(9):1056–66.

    Article  CAS  PubMed  Google Scholar 

  193. Schuldt M, Rubio A, Preda O, Nogales FF. GATA binding protein 3 expression is present in primitive patterns of yolk sac tumours but is not expressed by differentiated variants. Histopathology. 2016;68(4):613–5.

    Article  PubMed  Google Scholar 

  194. Varia M, McCluggage WG, Oommen R. High grade serous carcinoma of the ovary with a yolk sac tumour component in a postmenopausal woman: report of an extremely rare phenomenon. J Clin Pathol. 2012;65(9):853–4.

    Article  PubMed  Google Scholar 

  195. Husain AN, Colby TV, Ordóñez NG, Allen TC, Attanoos RL, Beasley MB, et al. Guidelines for pathologic diagnosis of malignant mesothelioma 2017 update of the consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med. 2018;142(1):89–108.

    Article  CAS  PubMed  Google Scholar 

  196. Tandon RT, Jimenez-Cortez Y, Taub R, Borczuk AC. Immunohistochemistry in peritoneal mesothelioma. A single-center experience of 244 cases. Arch Pathol Lab Med. 2018;142:236–42.

    Article  CAS  PubMed  Google Scholar 

  197. Ordóñez NG, Sahin AA. Diagnostic utility of immunohistochemistry in distinguishing between epithelioid pleural mesotheliomas and breast carcinomas: a comparative study. Hum Pathol. 2014;45(7):1529–40.

    Article  PubMed  Google Scholar 

  198. Berg KB, Churg A. GATA-3 immunohistochemistry for distinguishing sarcomatoid and desmoplastic mesothelioma from sarcomatoid carcinoma of the lung. Am J Surg Pathol. 2017;41(9):1221–5.

    Google Scholar 

  199. Chapel DB, Husain AN, Krausz T, McGregor SM. PAX-8 expression in a subset of malignant peritoneal mesotheliomas and benign mesothelium has diagnostic implications in the differential diagnosis of ovarian serous carcinoma. Am J Surg Pathol. 2017;41(12):1675–82.

    Google Scholar 

  200. Pillappa R, Maleszewski JJ, Sukov WR, Bedroske PP, Greipp PT, Boland JM, et al. Loss of BAP1 expression in atypical mesothelial proliferations helps to predict malignant mesothelioma. Am J Surg Pathol. 2018;42(2):256–63.

    Article  PubMed  Google Scholar 

  201. Cigognetti M, Lonardi S, Fisogni S, Balzarini P, Pellegrini V, Tironi A, et al. BAP1 (BRCA1-associated protein 1) is a highly specific marker for differentiating mesothelioma from reactive mesothelial proliferations. Mod Pathol. 2015;28(8):1043–57.

    Article  CAS  PubMed  Google Scholar 

  202. Ronnett BM, Yemelyanova AV, Vang R, Gilks CB, Miller D, Gravitt PE, et al. Endocervical adenocarcinomas with ovarian metastases: analysis of 29 cases with emphasis on minimally invasive cervical tumors and the ability of the metises to simulate primary ovarian neoplasms. Am J Surg Pathol. 2008;32(12):1835–53.

    Article  PubMed  Google Scholar 

  203. Lewis MR, Deavers MT, Silva EG, Malpica A. Ovarian involvement by metastatic colorectal adenocarcinoma: still a diagnostic challenge. Am J Surg Pathol. 2006;30(2):177–84.

    Article  PubMed  Google Scholar 

  204. Vang R, Gown AM, Wu LS, Barry TS, Wheeler DT, Yemelyanova A, et al. Immunohistochemical expression of CDX2 in primary ovarian mucinous tumors and metastatic mucinous carcinomas involving the ovary: comparison with CK20 and correlation with coordinate expression of CK7. Mod Pathol. 2006;19(11):1421–8.

    Article  CAS  PubMed  Google Scholar 

  205. Perez Montiel D, Arispe Angulo K, Cantu d Leon D, Bornstein Quevedo L, Canona Vilchis J, Herrera Montalvo L. The value of SATB2 in the differential diagnosis of intestinal type mucinous tumors of the ovary: primary vs metastatic. Ann Diagn Pathol. 2015;19(4):249–52.

    Article  PubMed  Google Scholar 

  206. McCluggage WG. Metastatic neoplasms involving the ovary. Surg Pathol Clin. 2011;4(1):297–330.

    Article  PubMed  Google Scholar 

  207. Vang R, Gown AM, Barry TS, Wheeler DT, Yemelyanova A, Seidman JD, et al. Cytokeratins 7 and 20 in primary and secondary mucinous tumors of the ovary: analysis of coordinate immunohistochemical expression profiles and staining distribution in 179 cases. Am J Surg Pathol. 2006;30(9):1130–9.

    Article  PubMed  Google Scholar 

  208. Meriden Z, Yemelyanova AV, Vang R, Ronnett BM. Ovarian metastases of pancraticobiliary tract adenocarcinomas: analysis of 35 cases, with emphasis on the ability of metastases to simulate primary ovarian mucinous tumors. Am J Surg Pathol. 2011;35(2):276–88.

    Article  PubMed  Google Scholar 

  209. Miettinen M, McCue PA, Sarlomo-Rikala M, Rys J, Cxapiewski P, Wazny K, et al. GATA-3: a multispecific but potentially useful marker in surgical pathology: a systematic analysis of 2500 epithelial and nonepithelial tumors. Am J Surg Pathol. 2014;38(1):13–22.

    Google Scholar 

  210. Irving JA, Young RH. Lung carcinoma metastatic to the ovary: a clinicopathologic study of 32 cases emphasizing their morphologic spectrum and problems in differential diagnosis. Am J Surg Pathol. 2005;29(8):997–1006.

    Article  PubMed  Google Scholar 

  211. Fukunaga M. Immunohistochemical characterization of p57(KIP2) expression in early hydatidiform moles. Hum Pathol. 2002;33(12):1188–92.

    Article  CAS  PubMed  Google Scholar 

  212. Banet N, DeScipio C, Murphy KM, Beierl K, Adams E, Vang R, et al. Characteristics of hydatidiform moles: analysis of a prospective series with p57 immunohistochemistry and molecular genotyping. Mod Pathol. 2014;27(2):238–54.

    Article  CAS  PubMed  Google Scholar 

  213. Buza N, Hui P. Immunohistochemistry and other ancillary techniques in the diagnosis of gestational trophoblastic diseases. Semin Diagn Pathol. 2014;31(3):223–32.

    Article  PubMed  Google Scholar 

  214. Hui P, Buza N, Murphy KM, Ronnett BM. Hydatidiform moles: genetic basis and precision diagnosis. Annu Rev Pathol. 2017;12:449–85.

    Article  CAS  PubMed  Google Scholar 

  215. Fisher RA, Nucci MR, Thaker HM, Weremowicz S, Genest DR, Castrillon DH. Complete hydatidiform mole retaining a chromosome 11 of maternal origin: molecular genetic analysis of a case. Mod Pathol. 2004;17(9):1155–60.

    Article  PubMed  Google Scholar 

  216. McConnell TG, Norris-Kirby A, Hagenkord JM, Ronnett BM, Murphy KM. Complete hydatidiform mole with retained maternal chromosomes 6 and 11. Am J Surg Pathol. 2009;33(9):1409–15.

    Article  PubMed  Google Scholar 

  217. DeScipio C, Haley L, Beierl K, Pandit AP, Murphy KM, Ronnett BM. Diandric triploid hydatidiform mole with loss of maternal chromosome 11. Am J Surg Pathol. 2011;35(10):1586–91.

    Article  PubMed  Google Scholar 

  218. Lewis GH, DeScipio C, Murphy KM, Haley L, Beierl K, Mosier S, et al. Characterization of androgenetic/biparental mosaic/chimeric conceptions, including those with a molar component: morphology, p57 immunohistochemistry, molecular genotyping, and risk of persistent gestational trophoblastic disease. Int J Gynecol Pathol. 2013;32(2):199–214.

    Article  CAS  PubMed  Google Scholar 

  219. Ronnett BM, DeScipio C, Murphy KM. Hydatidiform moles: ancillary techniques to refine diagnosis. Int J Gynecol Pathol. 2011;30(2):101–16.

    Article  PubMed  Google Scholar 

  220. Shih IM, Kurman RJ. Epithelioid trophoblastic tumor: a neoplasm distinct from choriocarcinoma and placental site trophoblastic tumor simulating carcinoma. Am J Surg Pathol. 1998;22(11):1393–403.

    Article  CAS  PubMed  Google Scholar 

  221. Fadare O, Parkash V, Carcangiu ML, Hui P. Epithelioid trophoblastic tumor: clinicopathological features with an emphasis on uterine cervical involvement. Mod Pathol. 2006;19(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  222. Chang A, Amin A, Gabrielson E, Illei P, Roden RB, Sharma R, et al. Utility of GATA-3 immunohistochemistry in differentiating urothelial carcinoma from prostate adenocarcinoma and squamous cell carcinomas of the uterine cervix, anus, and lung. Am J Surg Pathol. 2012;36(10):1472–6.

    Google Scholar 

  223. Banet N, Gown AM, Shih Ie M, Kay Li Q, Roden RB, Nucci MR, et al. GATA-3 expression in trophoblastic tissues: an immunohistochemical study of 445 cases, including diagnostic utility. Am J Surg Pathol. 2015;39(1):101–8.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Mirkovic J, Elias K, Drapkin R, Barletta JA, Quade B, Hirsch MS. GATA-3 expression in gestational trophoblastic tissues and tumours. Histopathology. 2015;67(5):636–44.

    Google Scholar 

  225. Mao TL, Seidman JD, Kurman RJ, Shih IM. Cyclin E and p16 immunoreactivity in epithelioid trophoblastic tumor--an aid in differential diagnosis. Am J Surg Pathol. 2006;30(9):1105–10.

    Article  PubMed  Google Scholar 

  226. Buza N, Baine I, Hui P. Precision genotyping diagnosis of lung tumors with trophoblastic morphology in young women. Mod Pathol. 2019;32(9):1271–80.

    Article  CAS  PubMed  Google Scholar 

  227. Rawish KR, Buza N, Zheng W, Fadare O. Endometrial carcinoma with trophoblastic components: clinicopathologic analysis of a rare entity. Int J Gynecol Pathol. 2018;37(2):174–90.

    Article  CAS  PubMed  Google Scholar 

  228. Hu YJ, Ip PP, Chan KK, Tam KF, Ngan HY. Ovarian clear cell carcinoma with choriocarcinomatous differentiation: report of a rare and aggressive tumor. Int J Gynecol Pathol. 2010;29(6):539–45.

    Article  PubMed  Google Scholar 

  229. Oliva E, Andrada E, Pezzica E, Prat J. Ovarian carcinomas with choriocarcinomatous differentiation. Cancer. 1993;72(8):2441–6.

    Article  CAS  PubMed  Google Scholar 

  230. Dirnhofer S, Koessler P, Ensinger C, Feichtinger H, Madersbacher S, Berger P. Production of trophoblastic hormones by transitional cell carcinoma of the bladder: association to tumor stage and grade. Hum Pathol. 1998;29(4):377–82.

    Article  CAS  PubMed  Google Scholar 

  231. Weissferdt A, Moran CA. Primary giant cell carcinomas of the lung: a clinicopathological and immunohistochemical analysis of seven cases. Histopathology. 2016;68(5):680–5.

    Article  PubMed  Google Scholar 

  232. Miettinen M, Wang Z, McCue PA, Sarlomo-Rikala M, Rys J, Biernat W, et al. SALL-4 expression in germ cell and non-germ cell tumors: a systematic immunohistochemical study of 3215 cases. Am J Surg Pathol. 2014;38(3):410–20.

    Google Scholar 

  233. Stichelbout M, Devisme L, Franquet-Ansart H, Massardier J, Vinatier D, Renaud F, et al. SALL-4 expression in gestational trophoblastic tumors: a useful tool to distinguish choriocarcinoma from placental site trophoblastic tumor and epithelioid trophoblastic tumor. Hum Pathol. 2016;54:121–6.

    Google Scholar 

  234. Rubinstein MM, Makker V. Optimizing immunotherapy for gynecologic cancers. Curr Opin Obstet Gynecol. 2020;32(1):1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Lheureux S, Butler MO, Clarke B, Cristea MC, Martin LP, Tonkin K, et al. Association of ipilimumab with safety and antitumor activity in women with metastatic or recurrent human papillomavirus-related cervical carcinoma. JAMA Oncol. 2018;4(7):e173776.

    Article  PubMed  Google Scholar 

  236. Martinez P, Del Campo JM. Pembrolizumab in recurrent advanced cervical squamous carcinoma. Immunotherapy. 2017;9(6):467–70.

    Article  CAS  PubMed  Google Scholar 

  237. Chung HC, Ros W, Delord JP, Perets R, Italiano A, Shapira-Frommer R, et al. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2019;37(17):1470–8.

    Article  CAS  PubMed  Google Scholar 

  238. Green AK, Feinberg J, Makker V. A review of immune checkpoint blockade therapy in endometrial cancer. Am Soc Clin Oncol Educ Book. 2020;40:1–7.

    PubMed  Google Scholar 

  239. Santin AD, Deng W, Frumovitz M, Buza N, Bellone S, Huh W, et al. Phase II evaluation of nivolumab in the treatment of persistent or recurrent cervical cancer (NCT02257528/NRG-GY002). Gynecol Oncol. 2020;157(1):161–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Frenel JS, Le Tourneau C, O'Neil B, Ott PA, Piha-Paul SA, Gomez-Roca C, et al. Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1-positive cervical cancer: results from the phase Ib KEYNOTE-028 trial. J Clin Oncol. 2017;35(36):4035–41.

    Article  CAS  PubMed  Google Scholar 

  241. Kim M, Kim H, Suh DH, Kim K, Kim H, Kim YB, et al. Identifying rational candidates for immunotherapy targeting PD-1/PD-L1 in cervical cancer. Anticancer Res. 2017;37(9):5087–94.

    CAS  PubMed  Google Scholar 

  242. Curley J, Conaway MR, Chinn Z, Duska L, Stoler M, Mills AM. Looking past PD-L1: expression of immune checkpoint TIM-3 and its ligand galectin-9 in cervical and vulvar squamous neoplasia. Mod Pathol. 2020;33:1182–92.

    Article  CAS  PubMed  Google Scholar 

  243. Sloan EA, Ring KL, Willis BC, Modesitt SC, Mills AM. PD-L1 expression in mismatch repair-deficient endometrial carcinomas, including Lynch syndrome-associated and MLH1 promoter hypermethylated tumors. Am J Surg Pathol. 2017;41(3):326–33.

    Article  PubMed  Google Scholar 

  244. McConechy MK, Talhouk A, Li-Chang HH, Leung S, Huntsman DG, Gilks CB, et al. Detection of DNA mismatch repair (MMR) deficiencies by immunohistochemistry can effectively diagnose the microsatellite instability (MSI) phenotype in endometrial carcinomas. Gynecol Oncol. 2015;137(2):306–10.

    Article  CAS  PubMed  Google Scholar 

  245. Mills AM, Liou S, Ford JM, Berek JS, Pai RK, Longacre TA. Lynch syndrome screening should be considered for all patients with newly diagnosed endometrial cancer. Am J Surg Pathol. 2014;38(11):1501–9.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Buza N, Ziai J, Hui P. Mismatch repair deficiency testing in clinical practice. Expert Rev Mol Diagn. 2016;16(5):591–604.

    Article  CAS  PubMed  Google Scholar 

  247. Larrea AA, Lujan SA, Kunkel TA. SnapShot: DNA mismatch repair. Cell. 2010;141(4):730 e731.

    Article  Google Scholar 

  248. Shia J. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part I. The utility of immunohistochemistry. J Mol Diagn. 2008;10(4):293–300.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Wu X, Snir O, Rottmann D, Wong S, Buza N, Hui P. Minimal microsatellite shift in microsatellite instability high endometrial cancer: a significant pitfall in diagnostic interpretation. Mod Pathol. 2019;32(5):650–8.

    Article  CAS  PubMed  Google Scholar 

  250. de Leeuw WJ, Dierssen J, Vasen HF, Wijnen JT, Kenter GG, Meijers-Heijboer H, et al. Prediction of a mismatch repair gene defect by microsatellite instability and immunohistochemical analysis in endometrial tumours from HNPCC patients. J Pathol. 2000;192(3):328–35.

    Article  PubMed  Google Scholar 

  251. Klarskov L, Ladelund S, Holck S, Roenlund K, Lindebjerg J, Elebro J, et al. Interobserver variability in the evaluation of mismatch repair protein immunostaining. Hum Pathol. 2010;41(10):1387–96.

    Article  CAS  PubMed  Google Scholar 

  252. Shia J, Ellis NA, Klimstra DS. The utility of immunohistochemical detection of DNA mismatch repair gene proteins. Virchows Arch. 2004;445(5):431–41.

    Article  CAS  PubMed  Google Scholar 

  253. Wahlberg SS, Schmeits J, Thomas G, Loda M, Garber J, Syngal S, et al. Evaluation of microsatellite instability and immunohistochemistry for the prediction of germ-line MSH2 and MLH1 mutations in hereditary nonpolyposis colon cancer families. Cancer Res. 2002;62(12):3485–92.

    CAS  PubMed  Google Scholar 

  254. Watkins JC, Nucci MR, Ritterhouse LL, Howitt BE, Sholl LM. Unusual mismatch repair immunohistochemical patterns in endometrial carcinoma. Am J Surg Pathol. 2016;40(7):909–16.

    Article  PubMed  Google Scholar 

  255. Radu OM, Nikiforova MN, Farkas LM, Krasinskas AM. Challenging cases encountered in colorectal cancer screening for Lynch syndrome reveal novel findings: nucleolar MSH6 staining and impact of prior chemoradiation therapy. Hum Pathol. 2011;42(9):1247–58.

    Article  PubMed  Google Scholar 

  256. Zhang Q, Young GQ, Yang Z. Pure discrete punctate nuclear staining pattern for MLH1 protein does not represent intact nuclear expression. Int J Surg Pathol. 2020;28(2):146–52.

    Article  CAS  PubMed  Google Scholar 

  257. Pai RK, Pai RK. A practical approach to the evaluation of gastrointestinal tract carcinomas for Lynch syndrome. Am J Surg Pathol. 2016;40(4):e17–34.

    Article  PubMed  Google Scholar 

  258. Goldstein JB, Wu W, Borras E, Masand G, Cuddy A, Mork ME, et al. Can microsatellite status of colorectal cancer be reliably assessed after neoadjuvant therapy? Clin Cancer Res. 2017;23(17):5246–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Hampel H, Frankel W, Panescu J, Lockman J, Sotamaa K, Fix D, et al. Screening for Lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res. 2006;66(15):7810–7.

    Article  CAS  PubMed  Google Scholar 

  260. Moline J, Mahdi H, Yang B, Biscotti C, Roma AA, Heald B, et al. Implementation of tumor testing for lynch syndrome in endometrial cancers at a large academic medical center. Gynecol Oncol. 2013;130(1):121–6.

    Article  PubMed  Google Scholar 

  261. Berends MJ, Hollema H, Wu Y, van Der Sluis T, Mensink RG, ten Hoor KA, et al. MLH1 and MSH2 protein expression as a pre-screening marker in hereditary and non-hereditary endometrial hyperplasia and cancer. Int J Cancer. 2001;92(3):398–403.

    Article  CAS  PubMed  Google Scholar 

  262. Ichikawa Y, Tsunoda H, Takano K, Oki A, Yoshikawa H. Microsatellite instability and immunohistochemical analysis of MLH1 and MSH2 in normal endometrium, endometrial hyperplasia and endometrial cancer from a hereditary nonpolyposis colorectal cancer patient. Jpn J Clin Oncol. 2002;32(3):110–2.

    Article  PubMed  Google Scholar 

  263. Lucas E, Chen H, Molberg K, Castrillon DH, Rivera Colon G, Li L, et al. Mismatch repair protein expression in endometrioid intraepithelial neoplasia/atypical hyperplasia: should we screen for Lynch syndrome in precancerous lesions? Int J Gynecol Pathol. 2018;38:533–42.

    Article  Google Scholar 

  264. Wong S, Hui P, Buza N. Frequent loss of mutation-specific mismatch repair protein expression in nonneoplastic endometrium of Lynch syndrome patients. Mod Pathol. 2020;33:1172–81.

    Article  CAS  PubMed  Google Scholar 

  265. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord JP, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020;38(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  267. Fader AN, Roque DM, Siegel E, Buza N, Hui P, Abdelghany O, et al. Randomized phase II trial of carboplatin-paclitaxel versus carboplatin-paclitaxel-trastuzumab in uterine serous carcinomas that overexpress human epidermal growth factor receptor 2/neu. J Clin Oncol. 2018;36(20):2044–51.

    Article  CAS  PubMed  Google Scholar 

  268. National Comprehensive Cancer Network. Uterine neoplasms (Version 4.2019). https://www.nccn.org/professionals/physician_gls/pdf/uterine.pdf. Accessed 6 Oct 2019.

  269. Buza N, English DP, Santin AD, Hui P. Toward standard HER2 testing of endometrial serous carcinoma: 4-year experience at a large academic center and recommendations for clinical practice. Mod Pathol. 2013;26(12):1605–12.

    Article  CAS  PubMed  Google Scholar 

  270. Buza N, Hui P. Marked heterogeneity of HER2/NEU gene amplification in endometrial serous carcinoma. Genes Chromosomes Cancer. 2013;52(12):1178–86.

    Article  CAS  PubMed  Google Scholar 

  271. Rottmann D, Matsumoto M, Assem H, Wong S, Hui P, Buza N. Does specimen type have an impact on HER2 status in endometrial serous carcinoma? Mod Pathol. 2020;33(2):1126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth D. Euscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Euscher, E.D., Buza, N., Hui, P. (2021). Immunohistochemistry. In: Wei, JJ., Hui, P. (eds) Practical Gynecologic Pathology. Practical Anatomic Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-68608-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68608-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68607-9

  • Online ISBN: 978-3-030-68608-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics