Skip to main content

Toward Non-invasive BCI-Based Movement Decoding

  • Chapter
  • First Online:
Neuroprosthetics and Brain-Computer Interfaces in Spinal Cord Injury
  • 735 Accesses

Abstract

Although motor imagery was used for the first BCI-controlled neuroprosthetic applications, it has turned out that it is a limited experimental strategy when it comes to control of more than two degrees of freedom. More natural ways for controlling the hand and ultimately the whole arm function have been identified in using attempted movement and even the attempt to move the whole arm. First evidence on the feasibility of these new BCI principles for neuroprosthesis control is discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ajiboye AB et al (2017) Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 389(10081):1821–1830

    Article  PubMed  PubMed Central  Google Scholar 

  • Alles D (1970) Information transmission by phantom sensations. In: IEEE Transactions on Man Machine Systems. IEEE, New York, pp 85–91. https://doi.org/10.1109/tmms.1970.299967

    Chapter  Google Scholar 

  • Ball T et al (2009) Differential representation of arm movement direction in relation to cortical anatomy and function. J Neural Eng 6(1):016006

    Article  PubMed  Google Scholar 

  • Biddiss E, Chau T (2007) Upper-limb prosthetics: critical factors in device abandonment. Am J Phys Med Rehabili 86(12):977–987

    Article  Google Scholar 

  • Birbaumer N et al (1999) A spelling device for the paralysed. Nature 398(6725):297–298

    Article  CAS  PubMed  Google Scholar 

  • Bradberry TJ, Gentili RJ, Contreras-Vidal JL (2009) Decoding three-dimensional hand kinematics from electroencephalographic signals. Annu Int Conf IEEE Eng Med Biol Soc 2009:5010–5013

    PubMed  Google Scholar 

  • Bradberry TJ, Gentili RJ, Contreras-Vidal JL (2010) Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals. J Neurosci 30(9):3432–3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavarriaga R, Sobolewski A, Millán JDR (2014) Errare machinale est: the use of error-related potentials in brain-machine interfaces. Front Neurosci 8:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Collinger JL et al (2013) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866):557–564

    Article  PubMed  PubMed Central  Google Scholar 

  • Ejaz N, Hamada M, Diedrichsen J (2015) Hand use predicts the structure of representations in sensorimotor cortex. Nat Neurosci 18(7):1034–1040

    Article  CAS  PubMed  Google Scholar 

  • Galán F et al (2015) Degraded EEG decoding of wrist movements in absence of kinaesthetic feedback. Hum Brain Mapp 36(2):643–654

    Article  PubMed  Google Scholar 

  • Gu Y, Dremstrup K, Farina D (2009) Single-trial discrimination of type and speed of wrist movements from EEG recordings. Clin Neurophysiol 120(8):1596–1600

    Article  PubMed  Google Scholar 

  • Guger C et al (2001) Rapid prototyping of an EEG-based brain-computer interface (BCI). IEEE Trans Neural Syst Rehabilit Eng 9(1):49–58

    Article  CAS  Google Scholar 

  • Halder S et al (2015) Brain-controlled applications using dynamic P300 speller matrices. Artif Intell Med 63(1):7–17

    Article  PubMed  Google Scholar 

  • Hammer J et al (2016) Predominance of movement speed over direction in neuronal population signals of motor cortex: intracranial EEG data and a simple explanatory model. Cereb Cortex 26(6):2863–2881

    Article  PubMed  PubMed Central  Google Scholar 

  • Hehenberger L et al (2019) Tuning of parameters for a vibrotactile kinaesthetic feedback system utilizing tactile illusions. Proc 8th Graz Brain-Comp Interf Conf 2019:244–248

    Google Scholar 

  • Hehenberger L et al (2020) Assessing the impact of vibrotactile kinaesthetic feed-back on low-frequency EEG in a center-out task. J Neural Eng 17:056032

    Article  PubMed  Google Scholar 

  • Hochberg LR et al (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holz EM et al (2015) Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: a case study. Arch Phys Med Rehabil 96(3 Suppl):S16–S26

    Article  PubMed  Google Scholar 

  • Hommelsen M et al (2017) Sensory feedback interferes with mu rhythm based detection of motor commands from electroencephalographic signals. Front Hum Neurosci 11:523

    Article  PubMed  PubMed Central  Google Scholar 

  • Horki P et al (2010) Asynchronous steady-state visual evoked potential based BCI control of a 2-DoF artificial upper limb. Biomed Eng 55(6):367–374

    Article  Google Scholar 

  • Israr A, Poupyrev I (2011) Tactile brush, Proceedings of the 2011 annual conference on Human factors in computing systems—CHI ’11. doi: https://doi.org/10.1145/1978942.1979235.

  • Jochumsen M et al (2013) Detection and classification of movement-related cortical potentials associated with task force and speed. J Neural Eng 10(5):056015

    Article  PubMed  Google Scholar 

  • Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56:550–564. https://doi.org/10.1007/bf00237997

    Article  CAS  PubMed  Google Scholar 

  • Kalcher J et al (1996) Graz brain-computer interface II: towards communication between humans and computers based on online classification of three different EEG patterns. Med Biol Eng Comput 34(5):382–388

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann T et al (2013) Face stimuli effectively prevent brain-computer interface inefficiency in patients with neurodegenerative disease. Clin Neurophysiol 124(5):893–900

    Article  PubMed  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9(6):718–727

    Article  CAS  PubMed  Google Scholar 

  • Keyl P et al (2019) Differences in characteristics of error-related potentials between individuals with spinal cord injury and age- and sex-matched able-bodied controls. Front Neurol 9:1192

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilgore KL et al (1997) An implanted upper-extremity neuroprosthesis. Follow-up of five patients. J Bone Joint Surg 79(4):533–541

    Article  CAS  PubMed  Google Scholar 

  • Kobler RJ, Sburlea AI, Müller-Putz GR (2018) Tuning characteristics of low-frequency EEG to positions and velocities in visuomotor and oculomotor tracking tasks. Sci Rep 8(1):17713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobler RJ et al (2019) Simultaneous decoding of velocity and speed during executed and observed tracking movements: an MEG study. Proceedings of the 8th Graz Brain Computer Interface Conference 2019, Graz. https://doi.org/10.3217/978-3-85125-682-6-19

    Book  Google Scholar 

  • Kobler RJ et al (2020a) Distinct cortical networks for hand movement initiation and directional processing: an EEG study. NeuroImage 220:117076. https://doi.org/10.1016/j.neuroimage.2020.117076

  • Kobler RJ et al (2020b) Distance- and speed-informed kinematics decoding improves M/EEG based upper-limb movement decoder accuracy. J Neural Eng 17:056027

    Google Scholar 

  • Kreilinger A et al (2013) BCI and FES training of a spinal cord injured end-user to control a neuroprosthesis. Biomed Tech 58:1. https://doi.org/10.1515/bmt-2013-4443

    Article  Google Scholar 

  • Kriegeskorte N (2008) Representational similarity analysis—connecting the branches of systems neuroscience. Front Syst Neurosci 2:4. https://doi.org/10.3389/neuro.06.004.2008

    Article  PubMed  PubMed Central  Google Scholar 

  • Kriegeskorte N, Kievit RA (2013) Representational geometry: integrating cognition, computation, and the brain. Trends Cogn Sci 17(8):401–412

    Article  PubMed  PubMed Central  Google Scholar 

  • Leo A et al (2016) A synergy-based hand control is encoded in human motor cortical areas. elife 5:e13420. https://doi.org/10.7554/elife.13420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes Dias C, Sburlea AI, Müller-Putz GR (2018) Masked and unmasked error-related potentials during continuous control and feedback. J Neural Eng 15(3):036031

    Article  PubMed  Google Scholar 

  • Lopes-Dias C, Sburlea AI, Müller-Putz GR (2019) Online asynchronous decoding of error-related potentials during the continuous control of a robot. Sci Rep 9(1):17596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopes-Dias C, Sburlea AI, Breitegger K, Wyss D, Drescher H, Wildburger R et al (2020a) Online asynchronous detection of error-related potentials in participants with a spinal cord injury by adapting a pre-trained generic classifier. J Neural Eng. https://doi.org/10.1088/1741-2552/abd1eb

  • Lopes-Dias C, Sburlea AI, Müller-Putz GR (2020b) A generic error-related potential classifier offers a comparable performance to a personalized classifier. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, pp 2995–2998. https://doi.org/10.1109/EMBC44109.2020.9176640

  • Luzhnica G et al (2017) Personalising vibrotactile displays through perceptual sensitivity adjustment. In: Proceedings of the 2017 ACM International Symposium on Wearable Computers—ISWC 17. ACM, New York. https://doi.org/10.1145/3123021.3123029

    Chapter  Google Scholar 

  • Martínez-Cagigal V et al (2020) Non-linear online low-frequency EEG-based decoding of hand movements during a pursuit tracking task. In: Proceedings of the 42st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Montréal, Canada

    Google Scholar 

  • Mondini V et al (2020) Online EEG-based decoding of arm movement for the natural control of an assistive robotic arm. J Neural Eng 17:4

    Article  Google Scholar 

  • Müller-Putz GR et al (2005) EEG-based neuroprosthesis control: a step towards clinical practice. Neurosci Lett 382(1–2):169–174

    Article  PubMed  CAS  Google Scholar 

  • Müller-Putz GR et al (2010) Temporal coding of brain patterns for direct limb control in humans. Front Neurosci 4:34. https://doi.org/10.3389/fnins.2010.00034

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller-Putz GR et al (2016) From classic motor imagery to complex movement intention decoding: the noninvasive Graz-BCI approach. Prog Brain Res 228:39–70

    Article  PubMed  Google Scholar 

  • Müller-Putz GR et al (2019) Applying intuitive EEG-controlled grasp neuroprostheses in individuals with spinal cord injury: preliminary results from the MoreGrasp clinical feasibility study. In: Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2019. IEEE, Berlin, pp 5949–5955

    Google Scholar 

  • Neuper C, Pfurtscheller G (2001) Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int J Psychophysiol 43(1):41–58

    Article  CAS  PubMed  Google Scholar 

  • Neuper C et al (2005) Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Cogn Brain Res 25(3):668–677

    Article  Google Scholar 

  • Neuper C, Wörtz M, Pfurtscheller G (2006) ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog Brain Res 159:211–222

    Article  PubMed  Google Scholar 

  • Ofner P, Müller-Putz GR (2012) Decoding of velocities and positions of 3D arm movement from EEG. Annu Int Conf IEEE Eng Med Biol Soc 2012:6406–6409

    PubMed  Google Scholar 

  • Ofner P, Müller-Putz GR (2015) Using a noninvasive decoding method to classify rhythmic movement imaginations of the arm in two planes. IEEE Trans Bio-Medi Eng 62(3):972–981

    Article  Google Scholar 

  • Ofner P et al (2017) Upper limb movements can be decoded from the time-domain of low-frequency EEG. PLoS One 12(8):e0182578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ofner P et al (2019) Attempted arm and hand movements can be decoded from low-frequency EEG from persons with spinal cord injury. Sci Rep 9(1):7134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Omedes J, Iturrate I et al (2015a) Analysis and asynchronous detection of gradually unfolding errors during monitoring tasks. J Neural Eng 12(5):056001

    Article  PubMed  Google Scholar 

  • Omedes J, Iturrate I et al (2015b) Asynchronous decoding of error potentials during the monitoring of a reaching task. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics. IEEE, Kowloon. https://doi.org/10.1109/smc.2015.541

    Chapter  Google Scholar 

  • Onose G et al (2012) On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up. Spinal Cord 50(8):599–608

    Article  CAS  PubMed  Google Scholar 

  • Peckham PH et al (2001) Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study. Arch Phys Med Rehabil 82(10):1380–1388

    Article  CAS  PubMed  Google Scholar 

  • Pereira J et al (2017) EEG neural correlates of goal-directed movement intention. NeuroImage 149:129–140

    Article  PubMed  Google Scholar 

  • Pereira J, Sburlea AI, Müller-Putz GR (2018) EEG patterns of self-paced movement imaginations towards externally-cued and internally-selected targets. Sci Rep 8(1):13394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Neuper C (1997) Motor imagery activates primary sensorimotor area in humans. Neurosci Lett 239(2–3):65–68

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain-computer communication. Proc IEEE 89:1123–1134. https://doi.org/10.1109/5.939829

    Article  Google Scholar 

  • Pfurtscheller G et al (1997) EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol 103(6):642–651

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G et al (2000) Brain oscillations control hand orthosis in a tetraplegic. Neurosci Lett 292(3):211–214

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G et al (2003) “Thought”—control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett 351(1):33–36

    Article  CAS  PubMed  Google Scholar 

  • Pistohl T et al (2012) Decoding natural grasp types from human ECoG. NeuroImage 59:248–260. https://doi.org/10.1016/j.neuroimage.2011.06.084

    Article  PubMed  Google Scholar 

  • Robinson N, Vinod AP (2016) Noninvasive brain-computer interface: decoding arm movement kinematics and motor control. IEEE Syst Man Cybernet Magaz 2:4–16. https://doi.org/10.1109/msmc.2016.2576638

    Article  Google Scholar 

  • Rohm M et al (2013) Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Artif Intell Med 59(2):133–142

    Article  PubMed  Google Scholar 

  • Rupp R et al (2013) Think2grasp—BCI-controlled neuroprosthesis for the upper extremity. Biomed Tech 58:Suppl 1. https://doi.org/10.1515/bmt-2013-4440

    Article  Google Scholar 

  • Saunders I, Vijayakumar S (2011) The role of feed-forward and feedback processes for closed-loop prosthesis control. J Neuroeng Rehabilit 8:60

    Article  Google Scholar 

  • Sburlea AI, Müller-Putz GR (2018) Exploring representations of human grasping in neural, muscle and kinematic signals. Sci Rep 8(1):16669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sburlea, A. I. and Müller-Putz G. R. (2019) How similar are the neural patterns when observing grasping hand postures to the behavioral patterns when executing the grasp? Proceedings of the 8th Graz Brain-Computer Interface Conference 2019. doi: https://doi.org/10.3217/978-3-85125-682-6-51

  • Schalk G et al (2007) Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J Neural Eng 4(3):264–275

    Article  CAS  PubMed  Google Scholar 

  • Schwarz A et al (2018) Decoding natural reach-and-grasp actions from human EEG. J Neural Eng 15(1):016005

    Article  PubMed  Google Scholar 

  • Shahriari Y et al (2019) An exploration of BCI performance variations in people with amyotrophic lateral sclerosis using longitudinal EEG data. J Neural Eng 16(5):056031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5(11):1226–1235

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This is to acknowledge Andreea I. Sburlea, Reinmar J. Kobler, Joana Pereira, Catarina Lopes-Dias, Lea Hehenberger, and Valeria Mondini who all contributed to this chapter.

This work was partly supported by the EU-Project MoreGrasp (643955) and the ERC-Cog-2015 “Feel Your Reach” (681231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Müller-Putz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Müller-Putz, G. (2021). Toward Non-invasive BCI-Based Movement Decoding. In: Müller-Putz, G., Rupp, R. (eds) Neuroprosthetics and Brain-Computer Interfaces in Spinal Cord Injury. Springer, Cham. https://doi.org/10.1007/978-3-030-68545-4_10

Download citation

Publish with us

Policies and ethics