Abstract
We introduce a family of variational functionals for spinor fields on a compact Riemann surface M that can be used to find close-to-conformal immersions of M into \(\mathbb {R}^3\) in a prescribed regular homotopy class. Numerical experiments indicate that, by taking suitable limits, minimization of these functionals can also yield piecewise smooth isometric immersions of a prescribed Riemannian metric on M.
Keywords
- Isometric and conformal immersions
- Variational problems
- Non-linear Dirac equation
This is a preview of subscription content, access via your institution.
Buying options



Pictures by the Hévéa project



References
Borrelli, V., Jabrane, S., Lazarus, F., Thibert, B.: Flat tori in three-dimensional space and convex integration. Proc. Nat. Acad. Sci. 109(19), 7218–7223 (2012)
Borrelli, V., Jabrane, S., Lazarus, F., Thibert, B.: Isometric embeddings of the square flat torus in ambient space. Ensaios Matemáticos 24, 1–91 (2013)
Burstall, F.E., Ferus, D., Leschke, K., Pedit, F., Pinkall, U.: Conformal Geometry of Surfaces in S\(^4\) and Quaternions. Lecture Notes in Mathematics. Springer, Berlin (2004)
Chern, A., Knöppel, F., Pinkall, U., Schröder, P.: Shape from metric. ACM Trans. Graph. 37(4), 63 (2018)
Crane, K., Pinkall, U., Schröder, P.: Spin transformations of discrete surfaces. ACM Trans. Graph. 30(4), 104:1–104:10 (2011)
Crane, K., Pinkall, U., Schröder, P.: Robust fairing via conformal curvature flow. ACM Trans. Graph. 32(4), 61:1–61:10 (2013)
Ferus, D., Leschke, K., Pedit, F., Pinkall, U.: Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2-tori. Inven. Math. 146(3), 507–593 (2001)
Garsia, A.M.: On the conformal types of algebraic surfaces of Euclidean space. Comment. Math. Helv. 37(1), 49–60 (1962)
Gromov, M.: Partial Differential Relations. Springer, Berlin (1986)
Heller, L., Ndiaye, C.B.: First explicit constrained Willmore minimizers of non-rectangular conformal class (2017). arXiv:1710.00533 [math.DG]
Heller, L., Pedit, F.: Towards a constrained Willmore conjecture. Willmore Energy and Willmore Conjecture. Monographs and Research Notes in Mathematics, pp. 119–139. Chapman & Hall/CRC, Boca Raton (2017)
Heller, S.: A spectral curve approach to Lawson symmetric CMC surfaces of genus 2. Math. Ann. 360(3–4), 607–652 (2014)
Hirsch, M.W.: Immersions of manifolds. Trans. Am. Math. Soc. 93, 242–276 (1959)
Hoffmann, T., Ye, Z.: A discrete extrinsic and intrinsic Dirac operator (2018). arXiv:1802.06278
Konopelchenko, B.G.: Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy. Ann. Global Anal. Geom. 18(1), 61–74 (2000)
Kuiper, N.H.: On \(C^1\)-isometric imbeddings I & II. Indag. Math. 58(545–556), 683–689 (1955)
Kusner, R., Schmitt, N.: The spinor representation of surfaces in space (1996). arXiv:dg-ga/9610005
Kuwert, E., Schätzle, R.: Minimizers of the Willmore functional under fixed conformal class. J. Differ. Geom. 93(3), 471–530 (2013)
Lin, C.S.: The local isometric embedding in \({ R^3}\) of two-dimensional Riemannian manifolds with Gaussian curvature changing sign cleanly. Commun. Pure App. Math. 39(6), 867–887 (1986)
Nash, J.: \(C^1\) Isometric imbeddings. Ann. Math. 60(3), 383–396 (1954)
Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. 20–63 (1956)
Ndiaye, C.B., Schätzle, R.: Explicit conformally constrained Willmore minimizers in arbitrary codimension. Calc. Var. Part. Differ. Equ. 51(1), 291–314 (2014)
Ohsawa, T., Kamberov, G., Norman, P., Pinkall, U., Pedit, F.: Quaternions, Spinors, and Surfaces, Contemporary Mathematics, vol. 299. American Mathematical Society, Providence (2002)
Pedit, F., Pinkall, U.: Quaternionic analysis on Riemann surfaces and differential geometry. Documenta Mathematica, Extra Volume ICM 1998, pp. 389–400 (1998)
Pinkall, U.: Regular homotopy classes of immersed surfaces. Topology 24(4), 421–434 (1985)
Rüedy, R.A.: Embeddings of open Riemann surfaces. Comment. Math. Helv. 46(1), 214–225 (1971)
Smale, S.: A classification of immersions of the \(2\)-sphere. Trans. Am. Math. Soc. 90(2), 281–290 (1959)
Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 5. Publish or Perish, Incorporated (1975)
Taimanov, I.A.: Surfaces in three-dimensional Lie groups in terms of spinors. RIMS Kokyuroku 1605, 133–150 (2008)
Ye, Z., Diamanti, O., Tang, C., Guibas, L.J., Hoffmann, T.: A unified discrete framework for intrinsic and extrinsic Dirac operators for geometry processing. Comput. Graph. Forum (2018)
Acknowledgements
Authors supported by SFB Transregio 109 “Discretization in Geometry and Dynamics” at Technical University Berlin. Third author partially supported by an RTF grant from the University of Massachusetts Amherst. Fifth author partially supported by the Einstein Foundation. Software support for images provided by SideFX. We thank Stefan Sechelmann for the abstract hyperbolic triangulated surface used in Fig. 1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Chern, A., Knöppel, F., Pedit, F., Pinkall, U., Schröder, P. (2021). Finding Conformal and Isometric Immersions of Surfaces. In: Hoffmann, T., Kilian, M., Leschke, K., Martin, F. (eds) Minimal Surfaces: Integrable Systems and Visualisation. m:iv m:iv m:iv m:iv 2017 2018 2018 2019. Springer Proceedings in Mathematics & Statistics, vol 349. Springer, Cham. https://doi.org/10.1007/978-3-030-68541-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-68541-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68540-9
Online ISBN: 978-3-030-68541-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)