Skip to main content

Part of the book series: Research Topics in Aerospace ((RTA))

Abstract

The formation of interphases between inorganic nanofillers and polymer matrices is usually known to have a dominant impact on the overall properties of the nanocomposite. Sometimes, multiple chemical and mechanical interphases with different thicknesses coexist in one nanocomposite system. Particularly in thermosetting matrices such as epoxies, the effect of nanofillers on the properties of the matrix is not only limited to the immediate distances, but a long-range chemical alteration in polymer network occurs. In this chapter, first, we investigate the interphase properties of epoxy/boehmite model systems via a combination of atomic force microscopy  approaches. Up to the resolution limitations of experimental approaches, long-range mechanical and chemical interphases are visualized via various physical and chemical property mapping of the surface. For investigating short-range interphases with sub-nanometer resolution, we propose a methodological framework to characterize the interphase properties based on molecular dynamic simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aluko O, Gowtham S, Odegard G (2017) Multiscale modeling and analysis of graphene nanoplatelet/carbon fiber/epoxy hybrid composite. Compos Part B: Eng 131:82–90. https://doi.org/10.1016/j.compositesb.2017.07.075

    Article  CAS  Google Scholar 

  2. Arash B, Park HS, Rabczuk T (2016) Coarse-grained model of the j-integral of carbon nanotube reinforced polymer composites. Carbon 96:1084–1092. https://doi.org/10.1016/j.carbon.2015.10.058

    Article  CAS  Google Scholar 

  3. Arash B, Wang Q, Varadan VK (2014) Mechanical properties of carbon nanotube/polymer composites. Sci Rep 4(1) (2014). https://doi.org/10.1038/srep06479

  4. Boerio F, Ondrus D (1990) Effect of substrates on the structure of polymer interphases. J Colloid Interface Sci 139(2):446–456. https://doi.org/10.1016/0021-9797(90)90117-7

    Article  CAS  Google Scholar 

  5. Bokhimi X, Toledo-Antonio J, Guzmán-Castillo M, Hernández-Beltrán F (2001) Relationship between crystallite size and bond lengths in boehmite. J Solid State Chem 159(1):32–40. https://doi.org/10.1006/jssc.2001.9124

    Article  CAS  Google Scholar 

  6. Borgani R, Pallon LKH, Hedenqvist MS, Gedde UW, Haviland DB (2016) Local charge injection and extraction on surface-modified al2o3 nanoparticles in LDPE. Nano Lett 16(9):5934–5937. https://doi.org/10.1021/acs.nanolett.6b02920

    Article  CAS  Google Scholar 

  7. Bryan JM (1950) The action of boiling distilled water on aluminium. J Soc Chem Ind 69(6):169–173. https://doi.org/10.1002/jctb.5000690603

    Article  CAS  Google Scholar 

  8. Butt HJ (1991) Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys J 60(6):1438–1444. https://doi.org/10.1016/s0006-3495(91)82180-4

    Article  CAS  Google Scholar 

  9. Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1–6):1–152. https://doi.org/10.1016/j.surfrep.2005.08.003

    Article  CAS  Google Scholar 

  10. Cho M, Yang S, Chang S, Yu S (2010) A study on the prediction of the mechanical properties of nanoparticulate composites using the homogenization method with the effective interface concept. Int J Numer Methods Eng 85(12):1564–1583. https://doi.org/10.1002/nme.3039

    Article  Google Scholar 

  11. Chung J, Munz M, Sturm H (2007) Stiffness variation in the interphase of amine-cured epoxy adjacent to copper microstructures. Surf Interface Anal 39(7):624–633. https://doi.org/10.1002/sia.2571

    Article  CAS  Google Scholar 

  12. Dazzi A (2007) SUB-100-nanometer infrared spectroscopy and imaging based on a near-field photothermal technique (“PTIR”). In: Biomedical vibrational spectroscopy. Wiley, pp 291–313. https://doi.org/10.1002/9780470283172.ch13

  13. Dazzi A, Prater CB, Hu Q, Chase DB, Rabolt JF, Marcott C (2012) AFM–IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Appl Spectrosc 66(12):1365–1384. https://doi.org/10.1366/12-06804

    Article  CAS  Google Scholar 

  14. Dazzi A, Prazeres R, Glotin F, Ortega J (2006) Subwavelength infrared spectromicroscopy using an AFM as a local absorption sensor. Infrared Phys Technol 49(1–2):113–121. https://doi.org/10.1016/j.infrared.2006.01.009

    Article  CAS  Google Scholar 

  15. Dazzi A, Prazeres R, Glotin F, Ortega JM (2005) Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt Lett 30(18):2388. https://doi.org/10.1364/ol.30.002388

    Article  CAS  Google Scholar 

  16. Drzal LT, Rich MJ, Lloyd PF (1983) Adhesion of graphite fibers to epoxy matrices: I. the role of fiber surface treatment. J Adhes 16(1):1–30. https://doi.org/10.1080/00218468308074901

  17. Elabshihy K, Kalinka G (2017) Circumventing boundary effects while characterizing epoxy/copper interphases using nanoindentation. Compos Interfaces 24(9):833–848. https://doi.org/10.1080/09276440.2017.1286878

    Article  CAS  Google Scholar 

  18. Falk ML, Langer JS (1998) Dynamics of viscoplastic deformation in amorphous solids. Phys Rev E 57(6):7192–7205. https://doi.org/10.1103/physreve.57.7192

    Article  CAS  Google Scholar 

  19. Fankhänel J, Arash B, Rolfes R (2019) Elastic interphase properties of nanoparticle/epoxy nanocomposites: A molecular dynamics study. Compos Part B: Eng 176:107, 211. https://doi.org/10.1016/j.compositesb.2019.107211

  20. Fankhänel J, Kempe A, Rolfes R (2016) Simulating atomic force microscopy for the determination of the elastic properties of nanoparticle reinforced epoxy resin. In: Proceedings of the VII European congress on computational methods in applied sciences and engineering (ECCOMAS Congress 2016). Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece. https://doi.org/10.7712/100016.1935.7538

  21. Fankhänel J, Silbernagl D, Khorasani MGZ, Daum B, Kempe A, Sturm H, Rolfes R (2016) Mechanical properties of boehmite evaluated by atomic force microscopy experiments and molecular dynamic finite element simulations. J Nanomater 2016:1–13. https://doi.org/10.1155/2016/5017213

    Article  CAS  Google Scholar 

  22. Farah K, Leroy F, Muüller-Plathe F, Böhm MC (2011) Interphase formation during curing: reactive coarse grained molecular dynamics simulations. J Phys Chem C 115(33):16451–16460. https://doi.org/10.1021/jp203480q

    Article  CAS  Google Scholar 

  23. Fernàndez-Francos X, Kazarian SG, Ramis X, Serra À (2013) Simultaneous monitoring of curing shrinkage and degree of cure of thermosets by attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy. Appl Spectrosc 67(12):1427–1436. https://doi.org/10.1366/13-07169

    Article  CAS  Google Scholar 

  24. Fernàndez-Francos X, Ramis X, Serra À (2013) From curing kinetics to network structure: a novel approach to the modeling of the network buildup of epoxy-anhydride thermosets. J Polym Sci Part A: Polym Chem 52(1):61–75. https://doi.org/10.1002/pola.26972

    Article  CAS  Google Scholar 

  25. Fitzer E, Geigl KH, Hüttner W, Weiss R (1980) Chemical interactions between the carbon fibre surface and epoxy resins. Carbon 18(6):389–393. https://doi.org/10.1016/0008-6223(80)90029-9

    Article  CAS  Google Scholar 

  26. Fripiat JJ, Bosmans HJ, Rouxhet PG (1967) Proton mobility in solids. I. Hydrogenic vibration modes and proton delocalization in boehmite. J Phys Chem 71(4):1097–1111. https://doi.org/10.1021/j100863a048

  27. Garton A, Stevenson WTK, Wang S (1987) Interfacial reactions in carbon-epoxy composites. Br Polym J 19(5):459–467. https://doi.org/10.1002/pi.4980190507

    Article  CAS  Google Scholar 

  28. Gupta VB, Drzal LT, Lee CYC, Rich MJ (1985) The temperature-dependence of some mechanical properties of a cured epoxy resin system. Polym Eng Sci 25(13):812–823. https://doi.org/10.1002/pen.760251305

    Article  CAS  Google Scholar 

  29. Hadden C, Klimek-McDonald D, Pineda E, King J, Reichanadter A, Miskioglu I, Gowtham S, Odegard G (2015) Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: multiscale modeling and experiments. Carbon 95:100–112. https://doi.org/10.1016/j.carbon.2015.08.026

    Article  CAS  Google Scholar 

  30. Harrington R, Nelson H (1940) An electron diffraction study of anodic films. Trans Am Inst Min Metall Eng 137:62

    Google Scholar 

  31. Hart RK (1954) A study of boehmite formation on aluminium surfaces by electron diffraction. Trans Faraday Soc 50:269. https://doi.org/10.1039/tf9545000269

    Article  CAS  Google Scholar 

  32. Hodoroaba VD, Motzkus C, Macé T, Vaslin-Reimann S (2014) Performance of high-resolution SEM/EDX systems equipped with transmission mode (TSEM) for imaging and measurement of size and size distribution of spherical nanoparticles. Microsc Microana 20(2):602–612. https://doi.org/10.1017/s1431927614000014

    Article  CAS  Google Scholar 

  33. Hong SG, Tsai JS (2001) The adsorption and curing behaviors of the epoxy/amidoamine system in the presence of metal oxides. J Therm Anal Calorim 63(1):31–46. https://doi.org/10.1023/a:1010119900035

    Article  CAS  Google Scholar 

  34. Huang J, He C, Liu X, Xu J, Tay CS, Chow SY (2005) Organic–inorganic nanocomposites from cubic silsesquioxane epoxides: direct characterization of interphase, and thermomechanical properties. Polymer 46(18):7018–7027. https://doi.org/10.1016/j.polymer.2005.05.150

    Article  CAS  Google Scholar 

  35. Huntsman Corporation: Araldite®LY 1556 / Aradur®917 / Accelerator DY 070. Datasheet

    Google Scholar 

  36. Jux M, Fankhänel J, Daum B, Mahrholz T, Sinapius M, Rolfes R (2018) Mechanical properties of epoxy/boehmite nanocomposites in dependency of mass fraction and surface modification—an experimental and numerical approach. Polymer 141:34–45. https://doi.org/10.1016/j.polymer.2018.02.059

    Article  CAS  Google Scholar 

  37. Kelber J, Rogers J, Banse B, Koel B (1990) Interaction of dimethylamine with clean and partially oxidized copper surfaces. Appl Surf Sci 44(3):193–204. https://doi.org/10.1016/0169-4332(90)90050-a

    Article  CAS  Google Scholar 

  38. Khorasani MGZ, Elert AM, Hodoroaba VD, Jácome LA, Altmann K, Silbernagl D, Sturm H (2019) Short- and long-range mechanical and chemical interphases caused by interaction of boehmite (\(\gamma \)-AlOOH) with anhydride-cured epoxy resins. Nanomaterials 9(6):853. https://doi.org/10.3390/nano9060853

    Article  CAS  Google Scholar 

  39. Khorasani MGZ, Silbernagl D, Platz D, Sturm H (2019) Insights into nano-scale physical and mechanical properties of epoxy/boehmite nanocomposite using different AFM modes. Polymers 11(2):235. https://doi.org/10.3390/polym11020235

    Article  CAS  Google Scholar 

  40. Khorasani MGZ, Silbernagl D, Szymoniak P, Hodoroaba VD, Sturm H (2019) The effect of boehmite nanoparticles (\(\gamma \)-AlOOH) on nanomechanical and thermomechanical properties correlated to crosslinking density of epoxy. Polymer 164:174–182. https://doi.org/10.1016/j.polymer.2018.12.054

    Article  CAS  Google Scholar 

  41. Kocjan A, Dakskobler A, Kosmac T (2010) Superhydrophobic nanostructured boehmite coatings prepared by AlN powder hydrolysis. Int J Appl Ceram Technol 8(4):848–853. https://doi.org/10.1111/j.1744-7402.2010.02516.x

    Article  CAS  Google Scholar 

  42. Lesko J, Jayaraman K, Reifsnider K (1995) Gradient interphase regions in composite systems. Key Eng Mater 116–117:61–86. https://doi.org/10.4028/www.scientific.net/kem.116-117.61

    Article  Google Scholar 

  43. Li Y, Wang S, Arash B, Wang Q (2016) A study on tribology of nitrile-butadiene rubber composites by incorporation of carbon nanotubes: molecular dynamics simulations. Carbon 100:145–150. https://doi.org/10.1016/j.carbon.2015.12.104

    Article  CAS  Google Scholar 

  44. Mäder E, Mai K, Pisanova E (2000) Interphase characterization in polymer composites—monitoring of interphasial behavior in dependence on the mode of loading. Compos Interfaces 7(3):133–147. https://doi.org/10.1163/156855400300185270

    Article  Google Scholar 

  45. Malagù M, Goudarzi M, Lyulin A, Benvenuti E, Simone A (2017) Diameter-dependent elastic properties of carbon nanotube-polymer composites: emergence of size effects from atomistic-scale simulations. Compos Part B: Eng 131:260–281. https://doi.org/10.1016/j.compositesb.2017.07.029

    Article  CAS  Google Scholar 

  46. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30(13):2157–2164. https://doi.org/10.1002/jcc.21224

    Article  CAS  Google Scholar 

  47. Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94(26):8897–8909. https://doi.org/10.1021/j100389a010

    Article  CAS  Google Scholar 

  48. Melchionna S, Ciccotti G, Holian BL (1993) Hoover NPT dynamics for systems varying in shape and size. Mol Phys 78(3):533–544. https://doi.org/10.1080/00268979300100371

    Article  CAS  Google Scholar 

  49. Munz M, Sturm H, Schulz E, Hinrichsen G (1998) The scanning force microscope as a tool for the detection of local mechanical properties within the interphase of fibre reinforced polymers. Compos Part A: Appl Sci Manuf 29(9–10):1251–1259. https://doi.org/10.1016/s1359-835x(98)00077-3

    Article  Google Scholar 

  50. Nasdala L, Kempe A, Rolfes R (2010) The molecular dynamic finite element method (mdfem). Comput Mater Contin 19:57–104. https://doi.org/10.3970/cmc.2010.019.057

    Article  Google Scholar 

  51. Nonnenmacher M, O’Boyle MP, Wickramasinghe HK (1991) Kelvin probe force microscopy. Appl Phys Lett 58(25):2921–2923. https://doi.org/10.1063/1.105227

    Article  Google Scholar 

  52. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminformatics 3(1). https://doi.org/10.1186/1758-2946-3-33

  53. Odegard G, Clancy T, Gates T (2005) Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46(2):553–562. https://doi.org/10.1016/j.polymer.2004.11.022

    Article  CAS  Google Scholar 

  54. Okada K, Nagashima T, Kameshima Y, Yasumori A, Tsukada T (2002) Relationship between formation conditions, properties, and crystallite size of boehmite. J Colloid Interface Sci 253(2):308–314. https://doi.org/10.1006/jcis.2002.8535

    Article  CAS  Google Scholar 

  55. Pangelinan AB, McCullough RL, Kelley MJ (1994) Analytic model for surface-induced molecular weight segregation in thermoplastic composites. J Polym Sci Part B: Polym Phys 32(14):2383–2394. https://doi.org/10.1002/polb.1994.090321409

    Article  CAS  Google Scholar 

  56. Paul D, Robeson L (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204. https://doi.org/10.1016/j.polymer.2008.04.017

    Article  CAS  Google Scholar 

  57. Piggott MR (1989) Tailored interphases in fibre reinforced polymers. MRS Proc 170. https://doi.org/10.1557/proc-170-265

  58. Platz D, Forchheimer D, Tholén EA, Haviland DB (2013) Interaction imaging with amplitude-dependence force spectroscopy. Nat Commun 4(1). https://doi.org/10.1038/ncomms2365

  59. Platz D, Tholén EA, Pesen D, Haviland DB (2008) Intermodulation atomic force microscopy. Appl Phys Lett 92(15):153, 106. https://doi.org/10.1063/1.2909569

  60. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  61. Rosa-Zeiser A, Weilandt E, Hild S, Marti O (1997) The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed-force mode operation. Meas Sci Technol 8(11):1333–1338. https://doi.org/10.1088/0957-0233/8/11/020

    Article  CAS  Google Scholar 

  62. Sasol AG (2014) Dispersal HP14. Datasheet

    Google Scholar 

  63. Schneider T, Stoll E (1978) Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys Rev B 17(3):1302–1322. https://doi.org/10.1103/physrevb.17.1302

    Article  CAS  Google Scholar 

  64. Sharpe LH (1972) The interphase in adhesion. J Adhes 4(1):51–64. https://doi.org/10.1080/00218467208072210

    Article  CAS  Google Scholar 

  65. Shin H, Yang S, Choi J, Chang S, Cho M (2015) Effect of interphase percolation on mechanical behavior of nanoparticle-reinforced polymer nanocomposite with filler agglomeration: a multiscale approach. Chem Phys Lett 635:80–85. https://doi.org/10.1016/j.cplett.2015.06.054

    Article  CAS  Google Scholar 

  66. Silbernagl D, Cappella B (2009) Reconstruction of a hidden topography by single AFM force–distance curves. Surf Sci 603(16):2363–2369. https://doi.org/10.1016/j.susc.2009.04.029

    Article  CAS  Google Scholar 

  67. Unger R, Braun U, Fankhänel J, Daum B, Arash B, Rolfes R (2019) Molecular modelling of epoxy resin crosslinking experimentally validated by near-infrared spectroscopy. Comput Mater Sci 161:223–235. https://doi.org/10.1016/j.commatsci.2019.01.054

    Article  CAS  Google Scholar 

  68. Van Landingham M, Dagastine R, Eduljee R, McCullough R, Gillespie J (1999) Characterization of nanoscale property variations in polymer composite systems: 1. Experimental results. Compos Part A: Appl Sci Manuf 30(1):75–83. https://doi.org/10.1016/s1359-835x(98)00098-0

  69. Varshney V, Patnaik SS, Roy AK, Farmer BL (2008) A molecular dynamics study of epoxy-based networks: cross-linking procedure and prediction of molecular and material properties. Macromolecules 41(18):6837–6842. https://doi.org/10.1021/ma801153e

    Article  CAS  Google Scholar 

  70. Wang Z, Wang Z, Yu H, Zhao L, Qu J (2012) Controlled network structure and its correlations with physical properties of polycarboxyl octaphenylsilsesquioxanes-based inorganic–organic polymer nanocomposites. RSC Adv 2(7):2759. https://doi.org/10.1039/c2ra00021k

    Article  CAS  Google Scholar 

  71. Williams J, Donnellan M, James M, Morris W (1990) Properties of the interphase in organic matrix composites. Mater Sci Eng: A 126(1–2):305–312. https://doi.org/10.1016/0921-5093(90)90137-r

    Article  Google Scholar 

  72. Yarovsky I (2002) Computer simulation of structure and properties of crosslinked polymers: application to epoxy resins. Polymer 43(3):963–969. https://doi.org/10.1016/s0032-3861(01)00634-6

    Article  CAS  Google Scholar 

  73. Yu S, Yang S, Cho M (2009) Multi-scale modeling of cross-linked epoxy nanocomposites. Polymer 50(3):945–952. https://doi.org/10.1016/j.polymer.2008.11.054

    Article  CAS  Google Scholar 

  74. Zare Y, Rhee KY (2017) Accounting the reinforcing efficiency and percolating role of interphase regions in tensile modulus of polymer/CNT nanocomposites. Eur Polym J 87:389–397. https://doi.org/10.1016/j.eurpolymj.2017.01.007

    Article  CAS  Google Scholar 

  75. Zhang X, Cui W, Page KL, Pearce CI, Bowden ME, Graham TR, Shen Z, Li P, Wang Z, Kerisit S, N’Diaye AT, Clark SB, Rosso KM (2018) Size and morphology controlled synthesis of boehmite nanoplates and crystal growth mechanisms. Cryst Growth Des 18(6):3596–3606. https://doi.org/10.1021/acs.cgd.8b00394

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support by the LUIS scientific computing cluster, which is funded by the Leibniz Universität Hannover, the Lower Saxony Ministry of Science and Culture (MWK) and the DFG. The authors gratefully acknowledge Mrs. Sigrid Benemann for the SEM measurements, Christiane Weimann for additional SEM measurements and Ulrike Braun for fruitful discussions concerning the interpretation of infrared spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Media Ghasem Zadeh Khorasani .

Editor information

Editors and Affiliations

Ethics declarations

The experimental investigations demonstrated in this chapter are reproduced with permission from the article published by Khorasani et al. [38] in Nanomaterials. The numerical part of this chapter, Sect. 8.3, is reproduced with permission from the article published by Fankhänel et al. [19].

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghasem Zadeh Khorasani, M., Fankhänel, J., Rolfes, R., Sturm, H. (2021). Short- and Long-Range Particle-Matrix Interphases. In: Sinapius, M., Ziegmann, G. (eds) Acting Principles of Nano-Scaled Matrix Additives for Composite Structures. Research Topics in Aerospace. Springer, Cham. https://doi.org/10.1007/978-3-030-68523-2_8

Download citation

Publish with us

Policies and ethics