Advertisement

Algorithm Portfolios

Chapter
  • 47 Downloads
Part of the SpringerBriefs in Optimization book series (BRIEFSOPTI)

Abstract

Instead of tackling an optimization problem through the application of a single solver, exploiting the algorithmic power of multiple methods can increase the probability to detect better solutions in shorter running time. Based on this simple idea, algorithm portfolios are defined as algorithmic schemes that harness a set of algorithms, which are typically sharing the available computation and hardware resources.

References

  1. 5.
    Akay, R., Basturk, A., Kalinli, A., Yao, X.: Parallel population-based algorithm portfolios: an empirical study. Neurocomputing 247, 115–125 (2017)CrossRefGoogle Scholar
  2. 28.
    Battiti, R., Mascia, F.: An algorithm portfolio for the sub-graph isomorphism problem. In: Stützle, T., Birattari, M., Hoos, H.H. (eds.) Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics, International Workshop, SLS. Lecture Notes in Computer Science, vol. 4638, pp. 106–120. Springer, Berlin, Heidelberg (2007)Google Scholar
  3. 34.
    Calderín, J.F., Masegosa, A.D., Pelta, D.A.: An algorithm portfolio for the dynamic maximal covering location problem. Memetic Comput. 9, 141–151 (2016)CrossRefGoogle Scholar
  4. 48.
    Gagliolo, M., Schmidhuber, J.: Algorithm portfolio selection as a bandit problem with unbounded losses. Ann. Math. Artif. Intell. 61(2), 49–86 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 58.
    Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1–2), 43–62 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 68.
    Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational problems. Science 27, 51–53 (1997)CrossRefGoogle Scholar
  7. 89.
    Lindauer, M., Hoos, H., Leyton-Brown, K., Schaub, T.: Automatic construction of parallel portfolios via algorithm configuration. Artif. Intell. 244, 272–290 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 90.
    Liu, S., Tang, K., Yao, X.: Generative adversarial construction of parallel portfolios. IEEE Trans. Cybern. 1–12 (2020)Google Scholar
  9. 91.
    Loreggia, A., Malitsky, Y., Samulowitz, H., Saraswat, V.: Deep learning for algorithm portfolios. In: Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, pp. 1280–1286 (2016)Google Scholar
  10. 118.
    Peng, F., Tang, K., Chen, G., Yao, X.: Population-based algorithm portfolios for numerical optimization. IEEE Trans. Evol. Comput. 14(5), 782–800 (2010)CrossRefGoogle Scholar
  11. 131.
    Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)CrossRefGoogle Scholar
  12. 137.
    Shukla, N., Dashora, Y., Tiwari, M., Chan, F., Wong, T.: Introducing algorithm portfolios to a class of vehicle routing and scheduling problem. In: Operations and Supply Chain Management (OSCM 2007), Bangkok, pp. 1015–1026 (2007)Google Scholar
  13. 140.
    Souravlias, D., Kotsireas, I.S., Pardalos, P.M., Parsopoulos, K.E.: Parallel algorithm portfolios with performance forecasting. Optim. Methods Softw. 34(6), 1231–1250 (2019)MathSciNetCrossRefGoogle Scholar
  14. 141.
    Souravlias, D., Parsopoulos, K.E.: On the design of metaheuristics-based algorithm portfolios. In: Pardalos, P.M., Migdalas, A. (eds.) Open Problems in Optimization and Data Analysis, pp. 271–284. Springer, Cham (2018)CrossRefGoogle Scholar
  15. 142.
    Souravlias, D., Parsopoulos, K.E., Alba, E.: Parallel algorithm portfolio with market trading-based time allocation. In: Lübbecke, M., et al. (eds.) Operations Research Proceedings 2014, pp. 567–574. Springer, Switzerland (2016)CrossRefGoogle Scholar
  16. 143.
    Souravlias, D., Parsopoulos, K.E., Kotsireas, I.S.: Circulant weighing matrices: a demanding challenge for parallel optimization metaheuristics. Optim. Lett. 10(6), 1303–1314 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 144.
    Souravlias, D., Parsopoulos, K.E., Meletiou, G.C.: Designing bijective S-boxes using algorithm portfolios with limited time budgets. Appl. Soft Comput. 59, 475–486 (2017)CrossRefGoogle Scholar
  18. 158.
    Tong, H., Liu, J., Yao, X.: Algorithm portfolio for individual-based surrogate-assisted evolutionary algorithms. In: Genetic and Evolutionary Computation Conference, Prague, pp. 943–950 (2019)Google Scholar
  19. 164.
    Wawrzyniak, J., Drozdowski, M., Sanlaville, É.: Selecting algorithms for large berth allocation problems. Eur. J. Oper. Res. 283(3), 844–862 (2020)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 167.
    Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. 32(1), 565–606 (2008)CrossRefzbMATHGoogle Scholar
  21. 172.
    Yuen, S., Chow, C., Zhang, X., Lou, Y.: Which algorithm should I choose: an evolutionary algorithm portfolio approach. Appl. Soft Comput. 40, 654–673 (2016)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Logistics Management DepartmentHelmut-Schmidt UniversityHamburgGermany
  2. 2.Dept of Computer Science & EngineeringUniversity of IoanninaIoanninaGreece
  3. 3.Department of Physics & Computer ScienceWilfrid Laurier UniversityWaterlooCanada
  4. 4.Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations