Abstract
Coal fly ash (CFA) represents from 40 to 90% of total coal combustion products (CCPs) generated in thermal power stations (Zierold and Odoh, Reviews on Environmental Health 35:401–418, 2020). As the most abundant fossil fuel, coal still contributes to the production of approximately 36% of the electricity used globally in 2019, despite the current trend in reducing CO2 emission by transition to alternative energy resources (Harris et al. Global aspects on coal combustion products. In: World of Coal Ash Conference, Conference Paper, 2019; IEA, Coal-fired power, 2020). The global coal consumption in 2019 decreased by 1.2% in 2019 with China as the major consumer of 2866 mtce comprising 53.0% of the global share (IEAgency, IEA Energy Atlas. International Energy Agency, 2020). India, USA and Europe follow in the second, third and fourth place with 583, 397 and 253 mtce, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
ACAAssociation. (2018). Coal ash recycling rate declines amid shifting production and use patterns. Washington, D.C. https://www.acaa-usa.org/Portals/9/Files/PDFs/Coal-Ash-Production-and-Use-2017.pdf
Aphane, M. E., Doucet, F. J., Kruger, R. A., Petrik, L., & van der Merwe, E. M. (2020). Preparation of sodium silicate solutions and silica nanoparticles from South African coal fly ash. Waste and Biomass Valorization, 11(8), 4403–4417. https://doi.org/10.1007/s12649-019-00726-6.
Arroyo, F., Font, O., Chimenos, J., Pereira, C., Querol, X., & Llano, P. (2014). IGCC fly ash valorisation. Optimisation of Ge and Ga recovery for an industrial application. Fuel Processing Technology, 124, 222–227. https://doi.org/10.1016/j.fuproc.2014.03.004.
Arroyo, F., Font, O., Fernández-Pereira, C., Querol, X., Juan, R., Ruiz, C., & Coca, P. (2009a). Germanium recovery from gasification fly ash: Evaluation of end-products obtained by precipitation methods. Journal of Hazardous Materials, 167(1), 582–588. https://doi.org/10.1016/j.jhazmat.2009.01.021.
Arroyo, F., Pereira, C., Olivares, J., & Llano, P. (2009b). Hydrometallurgical recovery of germanium from coal gasification fly ash: Pilot plant scale evaluation. Industrial & Engineering Chemistry Research, 48, 3573–3579. https://doi.org/10.1021/ie800730h.
Badenhorst, C. J., Wagner, N. J., Valentim, B. R., Santos, A. C., Guedes, A., Białecka, B., Całus, J., Popescu, L. G., Cruceru, M., Predeanu, G., & Viljoen, K. S. (2019). Char from coal ash as a possible precursor for synthetic graphite – Recent developments of the Charphite project. In: Proceedings of the World of Coal Ash (WOCA), St. Louis, MO, USA (pp. 13–16).
Bhatt, A., Priyadarshini, S., Acharath Mohanakrishnan, A., Abri, A., Sattler, M., & Techapaphawit, S. (2019). Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Studies in Construction Materials, 11, e00263. https://doi.org/10.1016/j.cscm.2019.e00263.
Biswas, R. K., Banu, R. A., & Islam, M. N. (2003). Some physico-chemical properties of D2EHPA: Part 2. Distribution, dimerization and acid dissociation constants in n-hexane/1 M (Na+, H+)SO42− system, interfacial adsorption and excess properties. Hydrometallurgy, 69, 157–168. https://doi.org/10.1016/S0304-386X(02)00212-8.
Biswas, R. K., & Begum, D. A. (2000). Kinetics of extraction and stripping of Ti(IV) in HCl–D2EHPA–kerosene system using the single drop technique. Hydrometallurgy, 55(1), 57–77. https://doi.org/10.1016/S0304-386X(99)00074-2.
Biswas, R. K., & Karmakar, A. K. (2014). Solvent Extraction of Ti(IV) from Acidic Sulphate Medium by Cyanex 301 Dissolved in Kerosene. Separation Science and Technology, 49(2), 278–289. https://doi.org/10.1080/01496395.2013.837484.
Burnet, G., Murtha, M. J., & Wijatno, H. (1977). Recovery of alumina from fly ash by high-temperature chlorination (No. IS-M-142; CONF-7705131-1). Ames Lab., IA (USA).
Butterman, W. C., & Jorgenson, J. D. (2005). Mineral commodity profiles: Germanium. US Geological Survey Open-File Report, 1218, 19. https://doi.org/10.3133/ofr20041218. (Online only edn.).
Catalano, J. G., Huhmann, B. L., Luo, Y., Mitnick, E. H., Slavney, A., & Giammar, D. E. (2012). Metal release and speciation changes during wet aging of coal fly ashes. Environmental Science & Technology, 46(21), 11804–11812. https://doi.org/10.1021/es302807b.
Chimenos, J. M., Fernández, A. I., del Valle-Zermeño, R., Font, O., Querol, X., & Coca, P. (2013). Arsenic and antimony removal by oxidative aqueous leaching of IGCC fly ash during germanium extraction. Fuel, 112, 450–458. https://doi.org/10.1016/j.fuel.2013.05.059.
Couto, N., Ferreira, A. R., Lopes, V., Peters, S. C., Mateus, E. P., Ribeiro, A. B., & Pamukcu, S. (2020). Electrodialytic recovery of rare earth elements from coal ashes. Electrochimica Acta, 359, 136934. https://doi.org/10.1016/j.electacta.2020.136934.
Diaz, E. I., Allouche, E. N., & Eklund, S. (2010). Factors affecting the suitability of fly ash as source material for geopolymers. Fuel, 89(5), 992–996. https://doi.org/10.1016/j.fuel.2009.09.012.
Doucet, F., Mohamed, S., Neyt, N., Castleman, B., & van der Merwe, E. (2016). Thermochemical processing of a South African ultrafine coal fly ash using ammonium sulphate as extracting agent for aluminium extraction. Hydrometallurgy, 166, 174–184. https://doi.org/10.1016/j.hydromet.2016.07.017.
Dutta, B. K., Khanra, S., & Mallick, D. (2009). Leaching of elements from coal fly ash: Assessment of its potential for use in filling abandoned coal mines. Fuel, 88(7), 1314–1323. https://doi.org/10.1016/j.fuel.2009.01.005.
ECOBA eV. (2016a). EU statistics: Estimate on production. e.V. ecoba. http://www.ecoba.com/ecobaccpprod.html.
ECOBA eV. (2016b). Production and utilisation of CCPs in 2016 in Europe (EU 15). UK Quality Ash Association. http://www.ukqaa.org.uk/wp-content/uploads/information/statistics/ECO-stat-2016_EU15_tab-1.pdf
En, L. J., & Yinghong S. (2016). Method for extracting lithium carbonate from coal ashes. CN104477948A.
Energy USDo (2017) DOE Invests $17.4 million in projects to advance recovery of rare earth elements from coal and coal byproducts. U.S. Department of Energy. https://www.energy.gov/articles/doe-invests-174-million-projects-advance-recovery-rare-earth-elements-coal-and-coal
Fan, X.-L., Lv, S.-Q., Xia, J.-L., Nie, Z.-Y., Zhang, D.-R., Pan, X., Liu, L.-Z., Wen, W., Zheng, L., & Zhao, Y.-D. (2019). Extraction of Al and Ce from coal fly ash by biogenic Fe3+ and H2SO4. Chemical Engineering Journal, 370, 1407–1424. https://doi.org/10.1016/j.cej.2019.04.014.
Fass, R., Fleming, J. C., Geva, J., Shalita, Z. P., White, M. D. (1993). Bioleaching method for the extraction of metals from coal fly ash using thiobacillus. CA 2063687A1.
Fass, R., et al. (1994). Bioleaching method for the extraction of metals from coal fly ash using thiobacillus. US5278069A.
Fečko, P., Kušnierová, M., Lyčková, B., Čablík, V., & Farkašová, A. (2003). Popílky. Ostrava: VŠB—Technická univerzita Ostrava.
Fernández-Turiel, J. L., de Carvalho, W., Cabañas, M., Querol, X., & López-Soler, A. (1994). Mobility of heavy metals from coal fly ash. Environmental Geology, 23(4), 264–270. https://doi.org/10.1007/BF00766741.
Filiz, M., & Sayar, A. A. (2006). extraction of titanium(IV) from aqueous hydrochloric acid solutions into alamine 336-M-Xylene mixtures. Chemical Engineering Communications, 193(9), 1127–1141. https://doi.org/10.1080/00986440500354457.
Font, O., Querol, X., Juan, R., Casado, R., Ruiz, C. R., López-Soler, Á., Coca, P., & Peña, F. G. (2007). Recovery of gallium and vanadium from gasification fly ash. Journal of Hazardous Materials, 139(3), 413–423. https://doi.org/10.1016/j.jhazmat.2006.02.041.
Fontana, D., Kulkarni, P., & Pietrelli, L. (2005). Extraction of titanium (IV) from acidic media by 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester. Hydrometallurgy, 77(3), 219–225. https://doi.org/10.1016/j.hydromet.2005.01.003.
Franus, W., Wiatros-Motyka, M. M., & Wdowin, M. (2015). Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research, 22(12), 9464–9474. https://doi.org/10.1007/s11356-015-4111-9.
Gabler, R. C., & Stoll, R. L. (1982). Extraction of leachable metals and recovery of alumina from utility coal ash. Resources and Conservation, 9, 131–142. https://doi.org/10.1016/0166-3097(82)90068-2.
Gao, Y., Liang, K., Gou, Y., Sa, W., Shen, W., & Cheng, F. (2020). Aluminum extraction technologies from high aluminum fly ash. Reviews in Chemical Engineering. https://doi.org/10.1515/revce-2019-0032.
Glavinović, M., Krause, M., Yang, L., McLeod, J. A., Liu, L., Baines, K. M., Friščić, T., & Lumb, J.-P. (2017). A chlorine-free protocol for processing germanium. Science Advances, 3(5), e1700149. https://doi.org/10.1126/sciadv.1700149.
Gollakota, A. R. K., Volli, V., & Shu, C.-M. (2019). Progressive utilisation prospects of coal fly ash: A review. Science of the Total Environment, 672, 951–989. https://doi.org/10.1016/j.scitotenv.2019.03.337.
Green DB, Joshi PB, Marinelli WJ, Preda DV, Skyler DA, Tsinberg A (2013) Recovery of rare earth elements and compounds from coal ash. US2013287653A1.
Group WB. (2017). The growing role of minerals and metals for a low carbon future. Washington, DC: World Bank.
Guo, C., Zou, J., Ma, S., Yang, J., & Wang, K. (2019a). Alumina extraction from coal fly ash via low-temperature potassium bisulfate calcination. Minerals, 9, 585. https://doi.org/10.3390/min9100585.
Guo, Y., Li, J., Yan, K., Cao, L., & Cheng, F. (2019b). A prospective process for alumina extraction via the co-treatment of coal fly ash and bauxite red mud: Investigation of the process. Hydrometallurgy, 186, 98–104. https://doi.org/10.1016/j.hydromet.2019.04.011.
Guo, Y., Li, Y., Cheng, F., Wang, M., & Wang, X. (2013). Role of additives in improved thermal activation of coal fly ash for alumina extraction. Fuel Processing Technology, 110, 114–121. https://doi.org/10.1016/j.fuproc.2012.12.003.
Gupta, B., Mudhar, N., Begum, Z., & Singh, I. (2007). Extraction and recovery of Ga(III) from waste material using Cyanex 923. Hydrometallurgy, 87(1), 18–26. https://doi.org/10.1016/j.hydromet.2007.01.001.
Hakimi, M., Kiani, P., Alikhani, M., Feizi, N., Bajestani, A. M., & Alimard, P. (2020). Reducing environmental pollution of fuel fly ash by extraction and removal vanadium pentoxide. Solid Fuel Chemistry, 54, 337–342.
Harris, D. (2017). 21—Ash as an internationally traded commodity. In T. Robl, A. Oberlink, & R. Jones (Eds.), Coal combustion products (CCP’s) (pp. 509–529). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100945-1.00021-6.
Harris, D., & Heidrich, C., & Feuerborn, J. (2019). Global aspects on coal combustion products. In: World of Coal Ash Conference, Conference Paper.
Hower, J. C., Robertson, J. D., Thomas, G. A., Wong, A. S., Schram, W. H., Graham, U. M., Rathbone, R. F., & Robl, T. L. (1996). Characterization of fly ash from Kentucky power plants. Fuel, 75(4), 403–411. https://doi.org/10.1016/0016-2361(95)00278-2.
Huang, C., Wang, Y., Huang, B., Dong, Y., & Sun, X. (2019). The recovery of rare earth elements from coal combustion products by ionic liquids. Minerals Engineering, 130, 142–147. https://doi.org/10.1016/j.mineng.2018.10.002.
IEA. (2020). Coal-fired power. IEA. https://www.iea.org/reports/coal-fired-power.
IEAgency. (2020). IEA Energy Atlas. International Energy Agency. http://energyatlas.iea.org/#!/tellmap/2020991907/2.
Islam, M. F., & Biswas, R. K. (1981). The solvent extraction of Ti(IV), Fe(III) and Mn(II) from acidic sulphate-acetato medium with bis-(2-ethyl hexyl) phosphoric acid in benzene. Journal of Inorganic and Nuclear Chemistry, 43(8), 1929–1933. https://doi.org/10.1016/0022-1902(81)80413-7.
Jandová, J., Vu, N. H., & Dvořák, P. (2018). Metody výroby neželezných kovů a zpracování odpadů. In VŠCHT Praha (pp. 201–202).
Jankowski, J., Ward, C. R., French, D., & Groves, S. (2006). Mobility of trace elements from selected Australian fly ashes and its potential impact on aquatic ecosystems. Fuel, 85(2), 243–256. https://doi.org/10.1016/j.fuel.2005.05.028.
Jyothi, R. K., Thenepalli, T., Ahn, J. W., Parhi, P. K., Chung, K. W., & Lee, J.-Y. (2020). Review of rare earth elements recovery from secondary resources for clean energy technologies: Grand opportunities to create wealth from waste. Journal of Cleaner Production, 267, 122048. https://doi.org/10.1016/j.jclepro.2020.122048.
Kaplan, V., Dosmukhamedov, N., Zholdasbay, E., Daruesh, G., & Argyn, A. (2020). Alumina and silica produced by chlorination of power plant fly ash treatment. JOM, 72(10), 3348–3357. https://doi.org/10.1007/s11837-020-04267-5.
Karmakar, A., & Biswas, R. K. (2019). A study on the kinetics of extraction of Ti(IV) from sulphate medium by Cyanex 302. Separation and Purification Technology, 221, 331–337. https://doi.org/10.1016/j.seppur.2019.03.098.
Kejík, P. (2010). Rozpustnost elektrárenských popílků ve vysoce alkalickém prostředí. Brno: Vysoké učení technické v Brně.
Kim, B., & Prezzi, M. (2008). Evaluation of the mechanical properties of class-F fly ash. Waste Management, 28(3), 649–659. https://doi.org/10.1016/j.wasman.2007.04.006.
Kose Mutlu, B., Cantoni, B., Turolla, A., Antonelli, M., Hsu-Kim, H., & Wiesner, M. R. (2018). Application of nanofiltration for Rare Earth Elements recovery from coal fly ash leachate: Performance and cost evaluation. Chemical Engineering Journal, 349, 309–317. https://doi.org/10.1016/j.cej.2018.05.080.
Kumar, A., Agrawal, S., & Dhawan, N. (2020). Processing of coal fly ash for the extraction of alumina values. Journal of Sustainable Metallurgy, 6(2), 294–306. https://doi.org/10.1007/s40831-020-00275-6.
Kun, C., Xiaoguang, C., Yin, D., Guimei, G., Jin, G., Zhaohua, G., Xinghui, H., Darui, L., Litao, S., Hongbin, W., Yongwang, W., & Huijun, X. (2017). Method for extracting rare earth from fly ash. CN108220630A.
Le, V. T., Ngo, T. T. C., Le, T. T. H., Nguyen, T. T., Hiroyuki, F. (2019). Properties of Fly Ashes from Thermal Power Stations in Relation to Use as Soil Amendments. Sains Malaysiana 48, 745–755. https://doi.org/10.17576/jsm-2019-4804-06.
Lee, Y.-R., Soe, J. T., Zhang, S., Ahn, J.-W., Park, M. B., & Ahn, W.-S. (2017). Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: A mini review. Chemical Engineering Journal, 317, 821–843. https://doi.org/10.1016/j.cej.2017.02.124.
Liu, G., Zhang, H., Gao, L., Zheng, L., & Peng, Z. (2004). Petrological and mineralogical characterizations and chemical composition of coal ashes from power plants in Yanzhou mining district, China. Fuel Processing Technology, 85(15), 1635–1646. https://doi.org/10.1016/j.fuproc.2003.10.028.
Ltd. HGP (2018). Annual production and utilisation survey report. Ash Development Association of Australia, Kembla.
Ltd. OCP. (2019). N,N,N’,N’ Tetra (2 Ethylhexyl) Diglycolamide (TEHDGA). http://www.orionchem.com/Tetra_2_Ethylhexyl_Diglycolamide_TEHDGA.html.
Luo, Y., Wu, Y., Ma, S., Zheng, S., Zhang, Y., & Chu, P. K. (2020). Utilization of coal fly ash in China: A mini-review on challenges and future directions. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-08864-4.
Ma, J., Qin, G., Zhang, Y., Sun, J., Wang, S., & Jiang, L. (2018). Heavy metal removal from aqueous solutions by calcium silicate powder from waste coal fly-ash. Journal of Cleaner Production, 182, 776–782. https://doi.org/10.1016/j.jclepro.2018.02.115.
Marco-Lozar, J. P., Cazorla-Amorós, D., & Linares-Solano, A. (2007). A new strategy for germanium adsorption on activated carbon by complex formation. Carbon, 45(13), 2519–2528. https://doi.org/10.1016/j.carbon.2007.08.020.
Marko, M., Opravil, T., Masilko, J., & Porizka, J. (2019a). Possibilities of fly ash activation in alumina recovery process. IOP Conference Series: Materials Science and Engineering, 583, 012003. https://doi.org/10.1088/1757-899x/583/1/012003.
Marko, M., Opravil, T., Masilko, J., & Pořízka, J. (2019b). Possibilities of fly ash activation in alumina recovery process. IOP Conference Series: Materials Science and Engineering, 583, 012003. https://doi.org/10.1088/1757-899X/583/1/012003.
Matjie, R. H., Bunt, J. R., & van Heerden, J. H. P. (2005). Extraction of alumina from coal fly ash generated from a selected low rank bituminous South African coal. Minerals Engineering, 18(3), 299–310. https://doi.org/10.1016/j.mineng.2004.06.013.
Mehrotra, A. K., Behie, L. A., Bishnoi, P. R., & Svrcek, W. Y. (1982). High-temperature chlorination of coal ash in a fluidized bed. 2. Recovery of iron, silicon, and titanium. Industrial & Engineering Chemistry Process Design and Development, 21(1), 44–50. https://doi.org/10.1021/i200016a009.
Mishra, D. P., & Das, S. K. (2010). A study of physico-chemical and mineralogical properties of Talcher coal fly ash for stowing in underground coal mines. Materials Characterization, 61(11), 1252–1259. https://doi.org/10.1016/j.matchar.2010.08.008.
Mondal, S., Ghar, A., Satpati, A. K., Sinharoy, P., Singh, D. K., Sharma, J. N., Sreenivas, T., & Kain, V. (2019). Recovery of rare earth elements from coal fly ash using TEHDGA impregnated resin. Hydrometallurgy, 185, 93–101. https://doi.org/10.1016/j.hydromet.2019.02.005.
Moreno, N., Querol, X., Andres, J., Stanton, K., Towler, M., Nugteren, H., Janssenjurkovicova, M., & Jones, R. (2005). Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel, 84(11), 1351–1363. https://doi.org/10.1016/j.fuel.2004.06.038.
Murtha, M., & Burnet, G. (1976). Recovery of alumina from coal fly ash by high temperature chlorination. Proceedings of the Iowa Academy of Science, 4, 125–129.
Nayak, N., & Panda, C. R. (2010). Aluminium extraction and leaching characteristics of Talcher Thermal Power Station fly ash with sulphuric acid. Fuel, 89(1), 53–58. https://doi.org/10.1016/j.fuel.2009.07.019.
Office of Research D, and Technology, Office of Safety, RDT. (2016). https://www.fhwa.dot.gov/publications/research/infrastructure/structures/97148/cfa53.cfm
Pan, J., Hassas, B. V., Rezaee, M., Zhou, C., & Pisupati, S. V. (2021). Recovery of rare earth elements from coal fly ash through sequential chemical roasting, water leaching, and acid leaching processes. Journal of Cleaner Production, 284, 124725. https://doi.org/10.1016/j.jclepro.2020.124725.
Pan, J., Nie, T., Vaziri Hassas, B., Rezaee, M., Wen, Z., & Zhou, C. (2020). Recovery of rare earth elements from coal fly ash by integrated physical separation and acid leaching. Chemosphere, 248, 126112. https://doi.org/10.1016/j.chemosphere.2020.126112.
Pan, K., Li, Y., Zhang, J., & Zhao, Q. (2018). A facile and low-cost method to produce ultrapure 99.99999% gallium. Materials, 11(11), 2308/2301–2308/2308. https://doi.org/10.3390/ma11112308.
Panda, C. R., & Sangita, S. (2020). Kinetics of aluminium leaching from coal fly ash by sulphuric acid. Indian Journal of Chemical Technology (IJCT), 27(4), 263–273.
Ponou, J., Dodbiba, G., Anh, J.-W., & Fujita, T. (2016). Selective recovery of rare earth elements from aqueous solution obtained from coal power plant ash. Journal of Environmental Chemical Engineering, 4(4, Part A), 3761–3766. https://doi.org/10.1016/j.jece.2016.08.019.
Pyo, H. J., Hyeok, J. J., Kwan, K. J., & Un, P. S. (2019). Method for extracting rare metal elements from coal ash and apparatus for extracting rare metal elements. WO2019022320A1,
Qi, L., & Yuan, Y. (2011). Characteristics and the behavior in electrostatic precipitators of high-alumina coal fly ash from the Jungar power plant, Inner Mongolia, China. Journal of Hazardous Materials, 192(1), 222–225. https://doi.org/10.1016/j.jhazmat.2011.05.012.
Qin, Z., Zhang, G., Luo, D., Li, C., Yue, H., & Liang, B. (2019). Separation of titanium from vanadium and iron in leach solutions of vanadium slag by solvent extraction with trioctyl tertiary amine (N235). Hydrometallurgy, 188, 216–221. https://doi.org/10.1016/j.hydromet.2019.07.004.
Rosita, W., Bendiyasa, I. M., Perdana, I., & Anggara, F. (2020). Sequential particle-size and magnetic separation for enrichment of rare-earth elements and yttrium in Indonesia coal fly ash. Journal of Environmental Chemical Engineering, 8(1), 103575. https://doi.org/10.1016/j.jece.2019.103575.
Roth, E., Macala, M., Lin, R., Bank, T., Thompson, R., Howard, B., Soong, Y., & Granite, E. (2017). Distribution and extraction of rare earth elements from coal and coal by-products. In Paper Presented at the 2017 World of Coal Ash (WOCA), Lexington, KY.
Rushwaya, M. J., & Ndlovu, S. (2017). Purification of coal fly ash leach liquor by solvent extraction: Identification of influential factors using design of experiments. International Journal of Mineral Processing, 164, 11–20. https://doi.org/10.1016/j.minpro.2017.05.004.
Sahoo, P. K., Kim, K., Powell, M. A., & Equeenuddin, S. M. (2016). Recovery of metals and other beneficial products from coal fly ash: A sustainable approach for fly ash management. International Journal of Coal Science & Technology, 3(3), 267–283. https://doi.org/10.1007/s40789-016-0141-2.
Saji John, K., Saji, J., Reddy, M. L. P., Ramamohan, T. R., & Rao, T. P. (1999). Solvent extraction of titanium(IV) from acidic chloride solutions by Cyanex 923. Hydrometallurgy, 51(1), 9–18. https://doi.org/10.1016/S0304-386X(98)00066-8.
Sangita, S., & Panda, C. R. (2020). Kinetics of aluminium leaching from coal fly ash by sulphuric acid. Indian Journal of Chemical Technology, 27(4), 263–327.
Seeley, F. G., McDowell, W. J., Felker, L. K., Kelmers, A. D., & Egan, B. Z. (1981). Determination of extraction equilibria for several metals in the development of a process designed to recover aluminum and other metals from coal combustion ash. Hydrometallurgy, 6(3), 277–290. https://doi.org/10.1016/0304-386X(81)90045-1.
Seidel, A., & Zimmels, Y. (1998). Mechanism and kinetics of aluminum and iron leaching from coal fly ash by sulfuric acid. Chemical Engineering Science, 53(22), 3835–3852. https://doi.org/10.1016/S0009-2509(98)00201-2.
Seidel, A., Zimmels, Y., & Armon, R. (2001). Mechanism of bioleaching of coal fly ash by Thiobacillus thiooxidans. Chemical Engineering Journal, 83(2), 123–130. https://doi.org/10.1016/S1385-8947(00)00256-4.
Seyfi, S., & Abdi, M. (2009). Extraction of titanium (IV) from acidic media by tri-n-butyl phosphate in kerosene. Minerals Engineering, 22(2), 116–118. https://doi.org/10.1016/j.mineng.2008.05.003.
Shabtai, Y., & Mukmenev, I. (1996). A combined chemical-biotechnological treatment of coal fly ash (CFA). Journal of Biotechnology, 51(3), 209–217. https://doi.org/10.1016/S0168-1656(96)01598-2.
Shi, Y., Jiang, K.-X., & Zhang, T.-A. (2020a). Cleaner extraction of alumina from coal fly ash: Baking-electrolysis method. Fuel, 273, 117697. https://doi.org/10.1016/j.fuel.2020.117697.
Shi, Y., Jiang, K.-X., Zhang, T.-A., & Lv, G.-Z. (2020b). Cleaner alumina production from coal fly ash: Membrane electrolysis designed for sulfuric acid leachate. Journal of Cleaner Production, 243, 118470. https://doi.org/10.1016/j.jclepro.2019.118470.
Sijakova Ivanova, T., Panov, Z., Blazev, K., & Zajkova, V. (2011). Investigation of fly ash heavy metals content and physico chemical properties from thermal power plant, Republic of Macedonia. International Journal of Engineering Science and Technology (IJEST), 3, 8219–8225.
Škvarla, J., Sisol, M., Botula, J., Kolesárová, M., & Krinická, I. (2011). The potential use of fly ash with a high content of unburned carbon in geopolymers. Acta Geodynamica et Geomaterialia, 2(162), 123–132.
Sole, K. C. (1999). Recovery of titanium from the leach liquors of titaniferous magnetites by solvent extraction: Part 1. Review of the literature and aqueous thermodynamics. Hydrometallurgy, 51(2), 239–253. https://doi.org/10.1016/S0304-386X(98)00081-4.
Su, H., Chen, H., & Lin, J. (2020). A sequential integration approach using Aspergillus Niger to intensify coal fly ash as a rare metal pool. Fuel, 270, 117460. https://doi.org/10.1016/j.fuel.2020.117460.
Survey, B. G. (2013). Critical metals handbook. Nottingham, UK: Wiley. https://doi.org/10.1002/9781118755341.ch9.
Taggart, R. K., Hower, J. C., & Hsu-Kim, H. (2018). Effects of roasting additives and leaching parameters on the extraction of rare earth elements from coal fly ash. International Journal of Coal Geology, 196, 106–114. https://doi.org/10.1016/j.coal.2018.06.021.
Tang, M., Zhou, C., Pan, J., Zhang, N., Liu, C., Cao, S., Hu, T., & Ji, W. (2019). Study on extraction of rare earth elements from coal fly ash through alkali fusion—Acid leaching. Minerals Engineering, 136, 36–42. https://doi.org/10.1016/j.mineng.2019.01.027.
Tauanov, Z., Azat, S., & Baibatyrova, A. (2020). A mini-review on coal fly ash properties, utilization and synthesis of zeolites. International Journal of Coal Preparation and Utilization, 1–23. https://doi.org/10.1080/19392699.2020.1788545.
Torralvo, F. A., & Fernández-Pereira, C. (2011). Recovery of germanium from real fly ash leachates by ion-exchange extraction. Minerals Engineering, 24(1), 35–41. https://doi.org/10.1016/j.mineng.2010.09.004.
Valeev, D., Kunilova, I., Shoppert, A., Salazar-Concha, C., & Kondratiev, A. (2020). High-pressure HCl leaching of coal ash to extract Al into a chloride solution with further use as a coagulant for water treatment. Journal of Cleaner Production, 276, 123206. https://doi.org/10.1016/j.jclepro.2020.123206.
Vassilev, S. V., & Vassileva, C. G. (2007). A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour. Fuel, 86(10–11), 1490–1512. https://doi.org/10.1016/j.fuel.2006.11.020.
Wang, L., Zhang, T.-A., Lv, G.-Z., Dou, Z.-H., Sun, W.-H., Zhang, W.-G., Niu, L.-P., & Zhang, Z.-M. (2019a). Titanium extraction from fly ash by carbochlorination. JOM, 71(12), 4624–4630. https://doi.org/10.1007/s11837-019-03460-5.
Wang, L., Zhang, T.-A., Lv, G.-Z., Dou, Z.-H., Zhang, W.-G., Niu, L.-P., & Z-m, Z. (2019b). Kinetics of magnesium and calcium extraction from fly ash by carbochlorination. JOM, 71(8), 2798–2805. https://doi.org/10.1007/s11837-019-03474-z.
Wang, N., Sun, X., Zhao, Q., Yang, Y., & Wang, P. (2020). Leachability and adverse effects of coal fly ash: A review. Journal of Hazardous Materials, 396, 122725. https://doi.org/10.1016/j.jhazmat.2020.122725.
Wang, Z., Dai, S., Zou, J., French, D., & Graham, I. T. (2019c). Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: Concentration, characterization and optimized extraction. International Journal of Coal Geology, 203, 1–14. https://doi.org/10.1016/j.coal.2019.01.001.
Wen, Z., Zhou, C.-C., Pan, J., Cao, S., Hu, T., Ji, W., & Nie, T. (2020). Recovery of rare-earth elements from coal fly ash via enhanced leaching. International Journal of Coal Preparation and Utilization, 1–15. https://doi.org/10.1080/19392699.2020.1790537.
Wu, Y., Yang, X., Li, L., Wang, Y., & Li, M. (2019). Kinetics of extracting alumina by leaching coal fly ash with ammonium hydrogen sulfate solution. Chemical Papers, 73(9), 2289–2295. https://doi.org/10.1007/s11696-019-00779-w.
Xingdong, L., Jialong, L., Yanming, P., Shengqun, T., & Mengdie, W. (2020). Method for extracting lithium from fly ash. CN110643832A.
Yan, L., Wang, Y., Ma, H., Han, Z., Zhang, Q., & Chen, Y. (2012). Feasibility of fly ash-based composite coagulant for coal washing wastewater treatment. Journal of Hazardous Materials, 203–204, 221–228. https://doi.org/10.1016/j.jhazmat.2011.12.004.
Yang, F., & Hlavacek, V. (1998). Carbochlorination kinetics of titanium dioxide with carbon and carbon monoxide as reductant. Metallurgical and Materials Transactions B, 29(6), 1297–1307. https://doi.org/10.1007/s11663-998-0053-7.
Yousuf, A., Manzoor, S. O., Youssouf, M., Malik, Z. A., & Khawaja, K. S. (2020). Fly ash: Production and utilization in india—an overview. Journal of Materials and Environmental Science, 11(6).
Zhang, J., Wen, K., & Li, L. (2021). Bio-modification of coal fly ash using urease-producing bacteria. Fuel, 286, 119386. https://doi.org/10.1016/j.fuel.2020.119386.
Zhang, L., & Xu, Z. (2016). An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash. Journal of Hazardous Materials, 312, 28–36. https://doi.org/10.1016/j.jhazmat.2016.03.025.
Zhang, L., & Xu, Z. (2017). Application of vacuum reduction and chlorinated distillation to enrich and prepare pure germanium from coal fly ash. Journal of Hazardous Materials, 321, 18–27. https://doi.org/10.1016/j.jhazmat.2016.08.070.
Zhao, Z., Cui, L., Guo, Y., Li, H., & Cheng, F. (2020). Recovery of gallium from sulfuric acid leach liquor of coal fly ash by stepwise separation using P507 and Cyanex 272. Chemical Engineering Journal, 381, 122699. https://doi.org/10.1016/j.cej.2019.122699.
Zhongran, D., Dexin, D., Nan, H., Feng, L., Guangyue, L., & Hui, Z. (2018). Method for extracting uranium from coal fly ash. CN108285981A.
Zierold, K. M., & Odoh, C. (2020). A review on fly ash from coal-fired power plants: Chemical composition, regulations, and health evidence. Reviews on Environmental Health, 35(4), 401–418. https://doi.org/10.1515/reveh-2019-0039.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Vu, H., Frýdl, T., Bastl, T., Dvořák, P., Kristianová, E., Tomáško, T. (2021). Recent Development in Metal Extraction from Coal Fly Ash. In: Jyothi, R.K., Parhi, P.K. (eds) Clean Coal Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-68502-7_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-68502-7_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68501-0
Online ISBN: 978-3-030-68502-7
eBook Packages: EnergyEnergy (R0)

