Skip to main content

Developments in Characterization and Mineral Processing of Coal Fly Ash for Recovery of Rare Earth Elements

  • Chapter
  • First Online:
Clean Coal Technologies

Abstract

Coal Fly Ash (CFA) is a promising technospheric resource of rare earth elements some of which are designated as critical metals in various countries due to their role in materials of contemporary significance, particularly in green energy technologies. The average REE content in CFA is about 0.05%. Due to the availability of huge volumes of CFA worldwide, focussed R&D efforts are being made to extract REEs from them along with various other valuable metals. It is the endeavour of all researchers involved to develop process schemes which are environmentally benign. Attaining such objective necessitates deeper understanding on the deportment of REEs in the feedstocks, possibility of pre-concentrating the valuables by physical beneficiation techniques and use of hydrometallurgical techniques which deploy bio-degradable or green solvents, enhancing the recyclability of reagents and conserving the process water. An important aspect in CFA utilization is to preserve the pozzolanic properties of CFA intact such that its bulk uses are not destroyed during the process of REE extraction. This chapter gives an overview on the developments in characterization of REEs in coal fly ash, strategies explored for their extraction and conceptual flowsheets developed on various feedstocks of CFA in different countries with added emphasis on Indian scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anand Rao, K., Serajuddin Md., Rama Devi, G., Thakurta, S. G., & Sreenivas, T. (2020). On the characterization and leaching of rare earths from a coal fly ash of Indian origin. Separation Science and Technology. https://doi.org/10.1080/01496395.2020.1718705.

  • Anand Rao, K., & Sreenivas, T. (2019). Recovery of rare earth elements from coal fly ash: a review. In A. A. Abhilash (Ed.), Critical and rare earth elements: Recovery from secondary resources (pp. 343–364). New York. ISBN-13: 978-0-367-08647-3: CRC Press (Taylor and Francis Group).

    Google Scholar 

  • Andreiadis, E., Miguirditchian, M., Pacary, V., & Hartmann, D. (2019). Rare earth recovery and separation using diglycolamides. ALTA 2019, Perth, Australia May 2019.

    Google Scholar 

  • Anon. (2020). Global rare earths metal market. Retrieved 17 September, 2020, from https://www.zionmarketresearch.com/sample/rare-earth-metals-market

  • Ansari, S., & Mohapatra, P. K. (2017). A review on solid phase extraction of actinides and lanthanides with amide based extractants. Journal of Chromatography A, 1499, 1–20.

    Article  Google Scholar 

  • Ansari, S. A., Pathak, P., Mohapatra, P. K., & Manchanda, V. K. (2012). Chemistry of diglycolamides: Promising extractants for actinide partitioning. Chemical Reviews, 112(3), 1751–1772. https://doi.org/10.1021/cr200002f.

    Article  Google Scholar 

  • ASTM. (2015). C618-15, Standard specification for coal fly ash and raw or calcined natural Pozzolan for use in concrete. West Conshohocken, PA: ASTM International. www.astm.org.

    Google Scholar 

  • Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10, 1285–1303. https://doi.org/10.1016/j.gsf.2018.12.005.

    Article  Google Scholar 

  • Bhave A, Ramesh R, Daejin K, Peterson ES (2018). Membrane assisted solvent extraction for rare earth element recovery. United States. https://www.osti.gov/servlets/purl/1438367

    Google Scholar 

  • Binnemans, K., Jones, P. T., Blanpain, B., Gerven, T. V., & Pontikes, Y. (2015). Towards zero-waste valorisation of rare-earth-containing industrial process residues: A critical review. Journal of Cleaner Production, 99, 17–38.

    Article  Google Scholar 

  • Binnemans, K., Jones, P. T., Blanpain, B., Gerven, T. V., Yang, Y., & Buchert, M. (2013). Recycling of rare earths: A critical review. Journal of Cleaner Production, 51, 1–22.

    Article  Google Scholar 

  • Blissett, R. S., Smalley, N., & Rowson, N. A. (2014). An investigation into six coal fly ashes from the United Kingdom and Poland to evaluate rare earth element content. Fuel, 119, 236–239.

    Article  Google Scholar 

  • Borra, C. R., Pontikes, Y., Binnemans, K., & Van, G. T. (2015). Leaching of rare earths from bauxite residue (red mud). Minerals Engineering, 76, 20–27.

    Article  Google Scholar 

  • BPSR. (2019). BP Statistical Review of World Energy 2019, 68th ed. Retrieved 12 June, 2020, from Source: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf

  • Cantoni, B. (2016). Recovery of rare earth elements from coal fly ash by nanofiltration. MSc Thesis in Environmental and Land Planning Engineering, Politecnico di Milano, A.Y.

    Google Scholar 

  • Cao, S., Zhou, C., Pan, J., Liu, C., Tang, M., Ji, W., Hu, T., & Zhang, N. (2018). Study on influence factors of leaching of rare earth elements from coal fly ash. Energy & Fuels, 32(7), 8000–8005.

    Article  Google Scholar 

  • Case, M., Fox, R., Baek, D., & Wai, C. (2019). Extraction of rare earths elements from chloride media with tetrabutyl diglycolamide in 1-octane modified carbon dioxide. Metals, 9(4), 429. https://doi.org/10.3390/met9040429.

    Article  Google Scholar 

  • CEA. (2018). Retrieved 5 October, 2020, from http://www.cea.nic.in/reports/others/thermal/tcd/flyash_201718.pdf

  • Charalampides, G., Vatalis, K. I., Apostoplos, B., & Ploutarch-Nikolas, B. (2015). Rare earth elements: Industrial applications and economic dependency of Europe. Procedia Economics of Finance, 24, 126–135.

    Article  Google Scholar 

  • Chen, T., Yan, B., Li, L. L., Yan, Z. A., Wang, J., & Xiao, X. M. (2019). Mineralogy characteristic study and exploration on the valuable metals enrichment of coal fly ash. Advances in Polymer Technology, 1839450, 1–7. https://doi.org/10.1155/2019/1839450.

    Article  Google Scholar 

  • Chi, R. A., & Xu, Z. (1999). A solution chemistry approach to the study of rare earth element precipitation by oxalic acid. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 30(2), 189–195.

    Article  Google Scholar 

  • Chun-fa, L., Yun-fen, J., Yong, L., Ping-guo, J., & Hua-ping, N. (2010). Adsorption-ex traction mechanism of heavy rare earth by Cyanex272-P507 impregnated resin. Transactions of the Nonferrous Metals Society of China, 20, 1511–1516.

    Article  Google Scholar 

  • Costis, S., Mueller Kristin, K., Blais, J. F., Lavallée, A. R., Coudert, L., & Neculita, C. M. (2019). Review of recent work on recovery of rare earths from secondary sources. Final Report No. R1859; Natural Resources Canada, Ottawa, ISBN: 978–2–89146-926-5, July 2019.

    Google Scholar 

  • Dai, S., & Finkelman, R. B. (2018). Coal as a promising source of critical elements: Progress and future prospects. International Journal of Coal Geology, 186, 155–164.

    Article  Google Scholar 

  • Dai, S., Zhao, L., Hower, J. C., Johnston, M. N., Song, W., Wang, P., & Zhang, S. (2014). Petrology, mineralogy, and chemistry of size-fractioned fly ash from the Jungar power plant, Inner Mongolia, China, with emphasis on the distribution of rare earth elements. Energy and Fuels, 28(2), 1502–1514.

    Article  Google Scholar 

  • Dai, S. F., Ren, D. Y., & Li, S. S. (2002). Occurrence and sequential chemical extraction of rare earth elements in coals and seam roofs. Journal of China University of Mining and Technology, 31, 349–353.

    Google Scholar 

  • Ding, Y., Harvey, D., & Wang, N. H. L. (2020). Two-zone ligand-assisted displacement chromatography for producing high-purity praseodymium, neodymium, and dysprosium with high yield and high productivity from crude mixtures derived from waste magnets. Green Chemistry, 22(12). https://doi.org/10.1039/d0gc00495b.

  • EC. (2014). European Commission 2014. Critical raw materials for the EU. Report of the ad hoc working group on defining critical raw materials European Commission, p 41.

    Google Scholar 

  • Evans, K. (2016). The history, challenges, and new developments in the management and use of bauxite residue. Journal of Sustainable Metallurgy, 2, 316–331.

    Article  Google Scholar 

  • Ferron, C. J., & Henry, P. (2015). A review of the recycling of rare earth metals. Canadian Metallurgical Quarterly, 54(4), 388–394. https://doi.org/10.1179/1879139515Y.0000000023.

    Article  Google Scholar 

  • Franus, W., Wiatros-Motyka, M. M., & Wdowin, M. (2015). Coal fly ash as a resource for rare earth elements. Environmental Science and Pollution Research International, 22(12), 9464–9474. https://doi.org/10.1007/s11356-015-4111-9.

    Article  Google Scholar 

  • GéoMégA. (2016). Resources Inc. Developing Rare Earths in Québec and Canada, PDAC.

    Google Scholar 

  • Geoscience Australia. (2013). Geoscience Australia review of critical metals. Retrieved 8th September, 2020, from https://www.ga.gov.au/about/projects/resources/critical-minerals

  • Gergoric, M., Ekberg, C., Foreman, M. R. S. J., Steenari, B. M., & Retegan, T. (2017). Characterization and leaching of neodymium magnet waste and solvent extraction of the rare-earth elements using TODGA. Journal of Sustainable Metallurgy, 3, 638–645.

    Article  Google Scholar 

  • Gijbels, K., Pontikes, Y., Lacobescu, R. I., Schreurs, S., Schroeyers, W., & Kuppens, T. (2017). Techno-economic and environmental analysis of alkali activated materials containing phosphogypsum and blast furnace slag. Sustainability assessments for the low-carbon economy, Interdisciplinary PhD expert course for young researchers, Hasselt, Belgium, 30/05–1/06/2017.

    Google Scholar 

  • Guyonnet, D., Lefebvre, G., & Menad, N. (2018). Rare earth elements and high tech products. Retrieved 16 September 2020, from https://www.cec4europe.eu/wp-content/uploads/2018/09/Chapter_3_3_Guyonnet_et_al_ Rare_earth_elements _and_high_tech_products.pdf

  • Han, K. N. (2020). Characteristics of precipitation of rare earth elements with various precipitants. Minerals, 10(2), 178. https://doi.org/10.3390/min10020178.

    Article  Google Scholar 

  • Haque, N., Hughes, A., Lim, S., & Vernon, C. (2014). Rare earth elements: overview of mining, mineralogy, uses, sustainability and environmental impact. Resources, 3, 614–635. https://doi.org/10.3390/resources30406140.

    Article  Google Scholar 

  • Hayes, S. M., & McCullough, E. A. (2018). Critical minerals: A review of elemental trends in comprehensive criticality studies. Resources Policy, 59, 192–199. https://doi.org/10.1016/j.resourpol.2018.06.015.

    Article  Google Scholar 

  • Helaly, O. S., Abd El-Ghanym, M., Moustafaa, I., Abuzaidn, H., & Ismail, M. (2012). Extraction of cerium(IV) using tributyl phosphate impregnated resin from nitric acid medium. Transactions of the Nonferrous Metals Society of China, 22, 206–214.

    Article  Google Scholar 

  • Hood, M. M., Targgart, R. K., Smith, R. C., Hsu-Kim, H., Henke, K. R., Graham, U., Groppo, J. G., Unrine, J. M., & Hower, J. C. (2017). Rare earth element distribution in fly ash derived from the Fire Clay coal, Kentucky. Coal Combust Gasificat Products, 9, 22–33.

    Article  Google Scholar 

  • Hower, J. C., Dai, S., Seredin, V. V., Zhao, L., Kostova, I. J., Silva, L. F. O., Mardon, S. M., & Gurdal, G. (2013). A note on the occurrence of yttrium and rare earth elements in coal combustion products. Coal Combustion and Gasification Products, 5, 39–47.

    Google Scholar 

  • Hower, J. C., Groppo, J. G., Henke, K. R., Graham, U. M., Hood, M. M., Joshi, P., & Preda, D. V. (2017). Ponded and land filled fly ash as a source of rare earth elements from a Kentucky power plant. Coal Combustion and Gasification Products., 9, 1–21. https://doi.org/10.4177/CCGPD-17-00003.1.

    Article  Google Scholar 

  • Hower, J. C., Qian, D., Briot, N. J., Henke, K. R., Hood, M. M., Taggart, R. K., & Hsu-Kim, H. (2018). Rare earth element associations in the Kentucky State University stoker ash. International Journal of Coal Geology, 189, 75–82.

    Article  Google Scholar 

  • Hower, J. C., Ruppert, L. F., & Eble, C. F. (1999). Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky. International Journal of Coal Geology, 39(1–3), 141–153.

    Article  Google Scholar 

  • Hu, Y., Florek, J., Larivie’re, D., Fontaine, F., & Kleitz, F. (2018). Recent advances in the separation of rare earth elements using mesoporous hybrid materials. The Chemical Record, 18, 1261–1276.

    Article  Google Scholar 

  • Huang, C., Wang, Y., Huang, B., Dong, Y., & Sun, X. (2019). The recovery of rare earth elements from coal combustion products by ionic liquids. Minerals Engineering, 130, 142–147.

    Article  Google Scholar 

  • Jaroni, M. S., Friedrich, B., & Letmathe, P. (2019). Economical feasibility of rare earth mining outside China. Minerals, 9, 576. https://doi.org/10.3390/min9100576.

    Article  Google Scholar 

  • Jayne, K., Carr, D. R., Rowean, J., & Kimble, M. C. (2019). Rare earth element extraction from coal fly ash. United States. Retrieved 15 June 2020, from https://www.osti.gov/biblio/1491487-rare-earth-element-extraction-from-coal-fly-ash

  • Jelinek, L., Wei, Y., Arai, T., & Kumagai, M. (2007). Selective Eu(III) electro-reduction and subsequent separation of Eu(II) from rare earths(III) via HDEHP impregnated resin. Solvent Extraction and Ion Exchange, 25(4), 503–513. https://doi.org/10.1080/07366290701415911.

    Article  Google Scholar 

  • Jha, M. K., Kumari, A., Panda, R., Kumar, J. R., Yoo, K., & Lee, J. Y. (2016). Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy, 161, 77–101.

    Article  Google Scholar 

  • Jin, H., Park, D. M., Gupta, M., Brewer, A. W., Ho, L., Singer, S. L., Bourcier, W. L., Woods, S., Reed, D. W., Lammers, L. N., Sutherland, J. W., & Yiao, Y. (2017). Techno-economic assessment for integrating biosorption into rare earth recovery process. ACS Sustainable Chemistry & Engineering, 5, 10148–10155.

    Article  Google Scholar 

  • Jordens, A., Cheng, Y. P., & Waters, K. E. (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97–114. https://doi.org/10.1016/j.mineng.2012.10.017.

    Article  Google Scholar 

  • Joshi, P. B., Preda, D. V., Skyler, D. A., Tsinberg, A., Green, B. D., & Marinelli, W. J. (2013). Recovery of rare earth elements and compounds from coal ash. U.S. Patent 20130287653A1.

    Google Scholar 

  • Jowitt, S. M., Werner, T. T., Weng, Z., & Mudd, G. M. (2018). Recycling and secondary sources of the rare earth elements. In 28th Goldschmidt Conference, Boston, 12–17 August 2018.

    Google Scholar 

  • Jyothi, R. K., Thenepalli, T., Ahn, J. W., Parhi, P. K., Chung, K. W., & Lee, J. Y. (2020). Review of rare earth elements recovery from secondary resources for clean energy technologies: Grand opportunities to create wealth from waste. Journal of Cleaner Production, 267, 122048.

    Article  Google Scholar 

  • Kashiwakura, S., Kumagai, Y., Kubo, H., & Wagatsuma, K. (2013). Dissolution of rare earth elements from coal fly ash particles in a Dilute H2SO4 solvent. Open Journal of Physical Chemistry, 3, 69–75.

    Article  Google Scholar 

  • Khaldun, I., Buchari, B., Amran, M.B., & Sulaeman, A. (2008). Separation of Sm(III) and Gd(III) using solvent-impregnated resin containing di-(2-ethylhexyl) phosphoric acid (D2EHPA) and tributylphosphate (TBP). In Proceeding of The International Seminar on Chemistry 2008, 79–82, Jatinangor, 30–31 October 2008.

    Google Scholar 

  • King, J. F., Taggart, R. K., Smith, R. C., Hower, J. C., & Hsu-Kim, H. (2018). Aqueous acid and alkaline extraction of rare earth elements from coal combustion ash. International Journal of Coal Geology, 195, 75–83.

    Article  Google Scholar 

  • Koltun, P., & Tharumarajah, A. (2014). Life cycle impact of rare earth elements. ISRN Metallurgy, 2014, 1–10. https://doi.org/10.1155/2014/907536.

    Article  Google Scholar 

  • Krishnamurthy, N., & Gupta, C. K. (2016). Extractive metallurgy of rare earths (II Edition). CRC Press, Taylor & Francis Group. ISBN 9780367267575.

    Google Scholar 

  • Krishnamurthy, P. (2020). Rare metal (RM) and Rare earth element (REE) resources: World scenario with special reference to India. Journal of the Geological Society of India, 95, 465–474. https://doi.org/10.1007/s12594-020-1463-7.

    Article  Google Scholar 

  • KT. (2015). K-Technologies Inc. Texas Rare Earth Resources Corp. Form 10-K, Annual Report Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1936, for the Fiscal Year Ended August 31, 2015.

    Google Scholar 

  • Lanzerstorfer, C. (2018). Pre-processing of coal combustion fly ash by classification for enrichment of rare earth elements. Energy Reports, 4, 660–663.

    Article  Google Scholar 

  • Lee, J. C. K., & Wen, Z. (2017). Rare earths from mines to metals: Comparing environmental impacts from China’s main production pathways. Journal of Industrial Ecology, 21(5), 1277–1290.

    Article  Google Scholar 

  • Leenheer, J., & Malcolm, R. (1973). Preparative free-flow electrophoresis as a method of fractionation of natural organic materials, Geological Survey Water-Supply Paper 1817- D 1973.

    Google Scholar 

  • Li, Y., Tian, C., Liu, W., Xu, S., Xu, Y., Cui, R., & Lin, Z. (2018). Carbon cloth supported nano-Mg(OH)2 for the enrichment and recovery of rare earth element Eu(III) from aqueous solution. Frontiers in Chemistry, 6, 118. https://doi.org/10.3389/fchem.2018.00118.

    Article  Google Scholar 

  • Lin, R., Howard, B. H., Roth, E. A., Bank TL, Granite, E. J., & Soong, Y. (2017). Enrichment of rare earth elements from coal and coal by-products by physical separations. Fuel, 200, 506–520.

    Article  Google Scholar 

  • Liu, P., Huang, R., & Tang, Y. (2019). Comprehensive Understandings of Rare Earth Element (REE) speciation in coal fly ashes and implication for REE extractability. Environmental Science & Technology, 53, 5369–5377.

    Article  Google Scholar 

  • Lucas, J., Lucas, P., Mercier, T. L., Rollat, A., & Davenport, W. (2015). Rare earths science. Technology, Production and Use, Elsevier.https://doi.org/10.1016/B978-0-444-62735-3.09992-7.

  • Ma, Z., Zhang, S., Zhang, H., & Cheng, F. (2019). Novel extraction of valuable metals from circulating fluidized bed derived high-alumina fly ash by acid–alkali–based alternate method. Journal of Cleaner Production, 230, 302–313. https://doi.org/10.1016/j.jclepro.2019.05.113.

    Article  Google Scholar 

  • Mardon, S. M., & Hower, J. C. (2004). Impact of coal properties on coal combustion by-product quality: examples from a Kentucky power plant. International Journal of Coal Geology, 59(3–4), 153–169.

    Google Scholar 

  • Massari, S., & Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on International markets and future strategies. Resources Policy, 38, 36–43.

    Article  Google Scholar 

  • Mishra, S. (2020). Comprehensive outlook for liquid-liquid extraction of rare earths (Chapter 7). In A. A. Abhilash (Ed.), Critical and rare earth elements (p. 165). NY. International Standard Book Number-13: 978–0–367-08647-3: CRC Press.

    Google Scholar 

  • Mondal, S., Ghar, A., Satpati, A. K., Sinharoy, P., Singh, D. K., Sharma, J. N., Sreenivas, T., & Kain, V. (2019). Recovery of rare earth elements from coal fly ash using TEHDGA impregnated resin. Hydrometallurgy, 185, 93–101.

    Article  Google Scholar 

  • Montross, N., Verba, C., Chan, H. L., & Lopano, C. (2018). Advanced characterization of rare earth element minerals in coal utilization byproducts using multimodal image analysis. International Journal of Coal Geology. https://doi.org/10.1016/j.coal.2018.06.018.

  • Mowafy, E. A., & Mohamed, D. (2017). Extraction of rare earth elements from nitrate solution using novel unsymmetrical diglycolamide. Separation Science and Technology, 52(6), 1006–1014.

    Article  Google Scholar 

  • Muravyov, M. I., Bulaev, A. G., Melamud, V. S., & Kondrat’eva, T. F. (2015). Leaching of rare earth elements from coal ashes using acidophilic chemolithotrophic microbial communities. Microbiology, 84(2), 194–201.

    Article  Google Scholar 

  • Mutlu, B. K., Cantoni, B., Turolla, A., Antonell, M., Hsu-Kim, H., & Wiesner, M. R. (2018). Application of nanofiltration for rare earth elements recovery from coal fly ash leachate: Performance and cost evaluation. Chemical Engineering Journal, 349, 309–317.

    Article  Google Scholar 

  • NETL. (2018). Rare earth elements from coal and coal by-products. National Energy Technology Laboratory. Retrieved 9 October 2018, from https://www.netl.doe.gov/research/coal/rare-earth-elements

  • NRC. (2008). National Research Council: Minerals, critical minerals, and the U.S. Economy (p. 58). Washington, DC: National Academies Press.

    Google Scholar 

  • NRCAN. (2018). Retrieved 5 October, 2020, from https://www.nrcan.gc.ca/our-natural-resources/minerals-mining/minerals-metals-facts/rare-earth-elements-facts/20522

  • ORNL. (2015). Oak Ridge National Laboratory, Critical Materials Institute. Rare-earth recycling invention licensed to U.S. Rare Earths. Retrieved 12 June 2020, from https://www.ornl.gov/news/critical-materials-institute-rare-earth-recycling-inventionlicensed-us-rare-earths

  • Pan, J., Nie, T., Vaziri Hassas, B., Rezaee, M., Wen, Z., & Zhou, C. (2020). Recovery of rare earth elements from coal fly ash by integrated physical separation and acid leaching. Chemosphere, 248, 126112. https://doi.org/10.1016/j.chemosphere.2020.126112.

    Article  Google Scholar 

  • Park, S., & Liang, W. (2019). Bioleaching of trace elements and rare earth elements from coal fly ash. International Journal of Coal Science & Technology, 6(1), 74–83.

    Article  Google Scholar 

  • Peelman, S., Kooijman, D., Sietsma, J., & Yang, Y. (2018). Hydrometallurgical recovery of rare earth elements from mine tailings and WEEE. Journal of Sustainable Metallurgy, 4, 367–377.

    Article  Google Scholar 

  • Peiravi, M., Ackah, L., Guru, R., Mohanty, M., Liu, J., Xu, B., Zhu, X., & Chen, L. (2017). Chemical extraction of rare earth elements from coal ash. Mining, Metallurgy & Exploration, 34, 170–177. https://doi.org/10.19150/mmp.7856.

    Article  Google Scholar 

  • Peramaki, S. (2014). Method development for determination and recovery of REE from industrial fly ash. Research Report No. 178, Dept. of Chemistry, University of Jyvaskyla, Finland. ISBN 978-951-39-6001-8.

    Google Scholar 

  • Peterson R, Heinrichs M, Giler J, Lanes A, & Taha, R. (2017). Recovery of REE from coal ash with recycling acid leach process. In World Coal Ash (WOCA) Conference, KY, 9–11 May 2017.

    Google Scholar 

  • Pietrelli, L., Bellomo, B., Fontana, D., & Montereali, M. R. (2002). Rare earths recovery from NiMH spent batteries. Hydrometallurgy, 66, 135–139.

    Article  Google Scholar 

  • Ponou, J., Dodbiba, G., Anh, J. W., & Fujita, T. (2016). Selective recovery of rare earth elements from aqueous solution obtained from coal power plant ash. Journal of Environmental Chemical Engineering, 4(4), 3761–3766.

    Article  Google Scholar 

  • Roosen, J., & Binnemans, K. (2014). Adsorption and chromatographic separation of rare earths with EDTA-and DTPA-functionalized chitosan biopolymers. Journal of Materials Chemistry A, 2, 1530–1540.

    Article  Google Scholar 

  • Royen, H., & Fortkamp, U. (2016). Rare earth elements: purification, separation and recyling. Stockholm, Sweden: IVL Swedish Environmental Research Institute. Report number C 211 ISBN 978–91–88319-12-8.

    Google Scholar 

  • Rozelle, P., Khadilkar, A. B., Pulati, N., Soundarrajan, N., Klima, M. S., Mosser, M. M., Miller, C. E., & Pisupati, S. V. (2016). A Study on removal of rare earth elements from U.S. coal byproducts by ion exchange. Metallurgical and Materials Transactions E, 3(1), 6–17.

    Article  Google Scholar 

  • Sahoo, P. K., Kim, K., Powell, M. A., & Equeenuddin, S. M. (2016). Recovery of metals and other beneficial products from coal fly ash: A sustainable approach for fly ash management. International Journal of Coal Science & Technology, 3(3), 267–283.

    Article  Google Scholar 

  • Scott, C., & Kolker, A. (2019). Rare earth elements in coal and coal fly ash: U.S. Geologiccal Survey Fact Sheet No. 2019–3048, Sept. 2019., 4p. https://doi.org/10.3133/fs20193048.

    Book  Google Scholar 

  • Serajuddin Md (2018). Precipitation of rare earths from the leachate of a coal fly ash. In International Seminar on Mineral Processing Technology 2018 (MPT 2018), Indian Institute of Mineral Engineers (IIME), IIT Dhanbad, Jharkhand, 10–12 October 2018.

    Google Scholar 

  • Seredin, V. V., & Dai, S. (2012). Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94, 67–93. https://doi.org/10.1016/j.coal.2011.11.001.

    Article  Google Scholar 

  • Seredin, V. V., Dai, S., Sun, Y., & Chekryzhov, I. Y. (2013). Coal deposits as promising sources of rare metals for alternative power and energy efficient technologies. Applied Geochemistry, 31, 1–11.

    Article  Google Scholar 

  • Shibata, J., Matsumoto, S., & Yamamoto. (2000). A novel separation technology for a heavy rare earth residue using a solvent impregnated resin. Solvent Extraction Research and Development Japan, 7, 167–175.

    Google Scholar 

  • Shu, Q., Khayambashi, A., Wang, X., & Wei, Y. (2018). Studies on adsorption of rare earth elements from nitric acid solution with macroporous silica-based bis(2-ethylhexyl)phosphoric acid impregnated polymeric adsorbent. Adsorption Science & Technology, 36(3–4), 1049–1065. https://doi.org/10.1177/0263617417748112.

    Article  Google Scholar 

  • Silva, R. G., Morais, C. A., & Oliveria, E. D. (2019a). Selective cerium removal by thermal treatment of mixed rare earth oxalates or carbonates obtained from non-purified rare earth sulphate liquor. Minerals Engineering, 139(105865), 1–15. https://doi.org/10.1016/j.mineng.2019.105865.

    Article  Google Scholar 

  • Silva, R. G., Morais, C. A., Teixeira, L. V., & Oliveira, E. D. (2019b). Selective precipitation of high-quality rare earth oxalates or carbonates from a purified sulfuric liquor containing soluble impurities. Mining, Metallurgy & Exploration, 36, 967–977.

    Article  Google Scholar 

  • Sinclair, L. K., Baek, D. L., Thompson, J., Tester, J. W., & Fox, R. V. (2017). Rare earth element extraction from pretreated bastnäsite in supercritical carbon dioxide. Journal of Supercritical Fluids, 124, 20–29.

    Article  Google Scholar 

  • Smith, R. C., Taggart, R. K., Hower, J. C., Wiesner, M. R., & Hsu-Kim, H. (2019). Selective recovery of rare earth elements from coal fly ash leachates using liquid membrane processes. Environmental Science & Technology, 53(8), 4490–4499. https://doi.org/10.1021/acs.est.9b00539.

    Article  Google Scholar 

  • Smolka-Danielowsjka, D. (2010). Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland—Upper Silesian Industrial Region. Journal of Environmental Radioactivity, 101, 965–968.

    Article  Google Scholar 

  • Stuckman, M. Y., Lopano, C. L., & Granite, E. J. (2018). Distribution and speciation of rare earth elements in coal combustion byproducts via synchrotron microscopy and spectroscopy. International Journal of Coal Geology, 195, 125–138.

    Article  Google Scholar 

  • Taggart, R. K., Hower, J. C., Dwyer, G. S., & Hsu-Kim, H. (2016). Trends in the rare earth element content of U.S.-based coal combustion fly ashes. Environmental Science and Technology, 50(11), 5919–5926. https://doi.org/10.1021/acs.est.6b00085.

    Article  Google Scholar 

  • Taggart, R. K., Hower, J. C., & Hsu-Kim, H. (2018). Effects of roasting additives and leaching parameters on the extraction of rare earth elements from coal fly ash. International Journal of Coal Geology, 196, 106–114. https://doi.org/10.1016/j.coal.2018.06.021.

    Article  Google Scholar 

  • Tang, M., Zhou, C., Pan, J., Zhang, N., Liu, C., Cao, S., Hua, T., & Ji, W. (2019). Study on extraction of rare earth elements from coal fly ash through alkali fusion—Acid leaching. Minerals Engineering, 136, 36–42.

    Article  Google Scholar 

  • Thakur, N. V. (2000). Separation of rare earths by solvent extraction. Mineral Processing and Extractive Metallurgy Review, 21(1–5), 277–306. https://doi.org/10.1080/08827500008914171.

    Article  Google Scholar 

  • Thriveni, T., Jegal, Y., & Ahn, J. W. (2015). Characteristic studies of yttrium extracted from coal ash, South Korea. In Recent advances on energy, environment, ecosystems, and development (pp. 20–25). ISBN: 978:1–61804–291-0.

    Google Scholar 

  • USDoE. (2011). US Department of Energy, Critical materials strategy, Dec 2011.

    Google Scholar 

  • USEPA. (2012). United States Environmental Protection Agency, Rare earth elements: A review of production, processing, recycling and associated environmental issues.

    Google Scholar 

  • USGS. (2019). USGS Fact Sheet 2019–3048, September 2019. Rare earth elements in coal and coal fly ash. https://doi.org/10.3133/fs20193048.

    Book  Google Scholar 

  • USGS. (2020). U.S. Geological Survey, Mineral Commodity summaries, January 2020. https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-rare-earths.pdf

  • Vahidi, E., & Zhao, F. (2017). Environmental life cycle assessment on the separation of rare earth oxides through solvent extraction. Journal of Environmental Management, 203(Pt 1), 255–263.

    Article  Google Scholar 

  • Vaisanen A, Valkonen J, Peramaki S, Jyvaskyla FI, Soikkeli V (2013) Method for processing ash, particular fly ash. International Publication number WO 628 2013/079804A1.

    Google Scholar 

  • Van Gosen, B. S., Verplanck, P. L., Seal, R. R., Long, K. R., & Joseph, G. (2017). Rare earth elements. In K. J. Schulz, D. Y. JH Jr., R. R. Seal, & D. C. Bradley (Eds.), Critical mineral resources of United States – Economic and environmental geology and prospects for future supply, USGS Professional Paper 1802 (pp. 1–31).

    Google Scholar 

  • Vind, J., Malfliet, A., Blanpain, B., Tsakiridis, P. E., Tkaczyk, A. H., Vassiliadou, V., & Panias, D. (2018). Rare earth element phases in bauxite residue. Minerals, 8(77), 1–32. https://doi.org/10.3390/min8020077.

    Article  Google Scholar 

  • Virolainen, S., Repo, E., & Sainio, T. (2019). Recovering rare earth elements from phosphogypsum using a resin-in-leach process: Selection of resin, leaching agent, and eluent. Hydrometallurgy, 189(105125), 1–9.

    Google Scholar 

  • Wall, F., Rollat, A., & Pell, R. S. (2017). Responsible sourcing of critical metals. Elements, 13, 313–318.

    Article  Google Scholar 

  • Wang, K., Adidharma, H., Radosz, M., Wan, P., Xu, X., Russell, C. K., Tian, H., Fan, M., & Yu, J. (2017). Recovery of rare earth elements with ionic liquids. Green Chemistry, 19, 4469–4493.

    Article  Google Scholar 

  • Wang, Z., Dai, S., Zou, J., French, D., & Graham, I. T. (2019). Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: Concentration, characterization and optimized extraction. International Journal of Coal Geology, 203, 1–14.

    Article  Google Scholar 

  • Weng, Z., Haque, N., Mudd, G. M., & Jowitt, S. M. (2016). Assessing the energy requirements and global warming potential of the production of rare earth elements. Journal of Cleaner Production, 139, 1282–1297.

    Article  Google Scholar 

  • Xie, F., Zhang, T. A., Dreisinger, D., & Doyle, F. (2014). A critical review on solvent extraction of rare earths from aqueous solutions. Minerals Engineering, 56, 10–28.

    Article  Google Scholar 

  • Yaftian, M. R., Burgard, M., Dieleman, C. B., & Matt, D. (1998). Rare-earth metal-ion separation using a supported liquid membrane mediated by a narrow rim phosphorylated calixarene. Journal of Membrane Science, 144(1), 57–64.

    Article  Google Scholar 

  • Yang, J. H., Cui, Y., Sun, G. X., Nie, Y., & Xia, G. M. (2013). Extraction of Sm(III) and Nd(III) with N,N,N’,N’-tetrabutyl-3-oxy-diglycolamide from hydrochloric acid. Journal of the Serbian Chemical Society, 78(1), 93–100.

    Article  Google Scholar 

  • Zaimes, G. G., Hubler, B. J., Wang, S., & Khanna, V. (2015). Environmental life cycle perspective on rare earth oxide production. ACS Sustainable Chemistry & Engineering, American Chemical Society, 3(2), 237–244.

    Article  Google Scholar 

  • Zepf, V. (2013). Rare earth elements: What and where they are. In Rare earth elements (pp. 11–39). Berlin, Heidelberg., Springer Theses (Recognizing Outstanding Ph.D. Research): Springer. https://doi.org/10.1007/978-3-642-35458-8_2.

    Chapter  Google Scholar 

  • Zhang, W., Groppo, J., & Honaker, R. (2015b). Ash beneficiation for REE recovery. In: 2015 World of Coal Ash (WOCA) Conference, Nashville, TN, USA, 5–7 May 2015.

    Google Scholar 

  • Zhang, W., & Honaker, R. (2019). Low cost selective precipitation circuit for recovery of rare earth elements from acid leachate of coal ash waste. US Patent 2019/0136344 A1.

    Google Scholar 

  • Zhang, W., Noble, A., Yang, X., & Honaker, R. (2020). A comprehensive review of rare earth elements recovery from coal-related materials. Minerals, 10, 451.

    Article  Google Scholar 

  • Zhang, W., Rezaee, M., Bhagavatula, A., Li, Y., Groppo, J., & Honaker, R. (2015a). A review of the occurrence and promising recovery methods of rare earth elements from coal and coal by-products. International Journal of Coal Preparation and Utilization, 35, 295–330.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Madangopal Krishnan, Director, Materials Group, BARC, for his interest in the work and encouragement. They are thankful to various Agencies in India who have generously provided the CFA samples for this research work. The support extended by their colleagues of Process Chemistry and Analysis Section is acknowledged with deep sense of gratitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tumuluri Sreenivas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sreenivas, T., Serajuddin, M., Moudgil, R., Anand Rao, K. (2021). Developments in Characterization and Mineral Processing of Coal Fly Ash for Recovery of Rare Earth Elements. In: Jyothi, R.K., Parhi, P.K. (eds) Clean Coal Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-68502-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68502-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68501-0

  • Online ISBN: 978-3-030-68502-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics