Skip to main content

Adsorption of Metals Using Activated Carbon Derived from Coal

  • Chapter
  • First Online:
Clean Coal Technologies

Abstract

Many industrial activities adversely affect the human health and environmental system. Wastewater containing high levels of pollutants such as metals is one of them. Nowadays metal pollution is the most concerned environmental problem. Various metals mainly mercury, cadmium, chromium, lead, copper, and arsenic present in wastewater are toxic and carcinogenic in nature. Coal-based activated carbon is favourable candidate for removing of toxic metals because of its high adsorption capacity compared to activated carbon (AC) derived from other sources. In this chapter, adsorption of metals present in wastewater using activated carbon is discussed. Furthermore, adsorption isotherm models, i.e. Langmuir or Freundlich, and adsorption kinetics model, i.e. pseudo-first order or pseudo-second order that commonly describe adsorption behaviour, are discussed. Further, the various factors affecting performance of AC to adsorb metals like the pH of solution, activated carbon impregnation, oxidation state, and temperature are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulsalam, J., Mulopo, J., Oboirien, B., Bada, S., & Falcon, R. (2019). Experimental evaluation of activated carbon derived from South Africa discard coal for natural gas storage. International Journal of Coal Science and Technology, 6, 459–477.

    Article  Google Scholar 

  • Ahmadpour, A., & Do, D. D. (1996). The preparation of active carbons from coal by chemical and physical activation. Carbon, 34, 471–479.

    Article  Google Scholar 

  • Ajmal, M., Rao, R. A. K., Ahmad, R., & Ahmad, J. (2000). Adsorption studies on Citrus reticulata (fruit peel of orange): Removal and recovery of Ni(II) from electroplating wastewater. Journal of Hazardous Materials, 79, 117–131.

    Article  Google Scholar 

  • Ali Atieh, M. (2011). Removal of chromium (VI) from polluted water using carbon nanotubes supported with activated carbon. Procedia Environmental Sciences, 4, 281–293.

    Article  Google Scholar 

  • Ansari, R., & Sadegh, M. (2007). Application of activated carbon for removal of arsenic ions from aqueous solutions. E-Journal of Chemistry, 4, 103–108.

    Article  Google Scholar 

  • Anwar, J., Shafique, U., Salman, M., Waheed-uz-Zaman, Anwar, S., & Anzano, J. M. (2009). Removal of chromium (III) by using coal as adsorbent. Journal of Hazardous Materials, 171, 797–801.

    Article  Google Scholar 

  • Arasteh, R., Masoumi, M., Rashidi, A. M., Moradi, L., Samimi, V., & Mostafavi, S. T. (2010). Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions. Applied Surface Science, 256, 4447–4455.

    Article  Google Scholar 

  • Arpa, Ç., Başyilmaz, E., Bektaş, S., Genç, Ö., & Yürüm, Y. (2000). Cation exchange properties of low rank Turkish coals: Removal of Hg, Cd and Pb from waste water. Fuel Processing Technology, 68, 111–120.

    Article  Google Scholar 

  • Arslan, G., & Pehlivan, E. (2007). Batch removal of chromium(VI) from aqueous solution by Turkish brown coals. Bioresource Technology, 98, 2836–2845.

    Article  Google Scholar 

  • Asuquo, E., Martin, A., Nzerem, P., Siperstein, F., & Fan, X. (2017). Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: Equilibrium, kinetics and characterisation studies. Journal of Environmental Chemical Engineering, 5, 679–698.

    Article  Google Scholar 

  • Attari, M., Bukhari, S. S., Kazemian, H., & Rohani, S. (2017). A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater. Journal of Environmental Chemical Engineering, 5, 391–399.

    Article  Google Scholar 

  • Bandosz, T. J., & Ania, C. O. (2006). Surface chemistry of activated carbons and its characterization. In T. J. Bandosz (Ed.), Interface science and technology (pp. 159–229). Elsevier.

    Google Scholar 

  • Bedia, J., Peñas-Garzón, M., Gómez-Avilés, A., Rodriguez, J., & Belver, C. (2018). A review on the synthesis and characterization of biomass-derived carbons for adsorption of emerging contaminants from water. C, 4, 63.

    Google Scholar 

  • Bedia, J., Peñas-Garzón, M., Gómez-Avilés, A., Rodriguez, J. J., & Belver, C. (2020). Review on activated carbons by chemical activation with FeCl3. C Journal of Carbon Research, 6, 21.

    Article  Google Scholar 

  • Bergna, D., Varila, T., Romar, H., & Lassi, U. (2018). Comparison of the properties of activated carbons produced in one-stage and two-stage processes. C, 4, 41.

    Google Scholar 

  • Blander, M., Sinha, S., Pelton, A. D., Eriksson, G. (1989). Calculations of the Influence of Additives on Coal Combustion Deposits. TMS Annual Meeting, 340–346.

    Google Scholar 

  • Boparai, H. K., Joseph, M., & O’Carroll, D. M. (2011). Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials, 186, 458–465.

    Article  Google Scholar 

  • Chen, H., Huo, Q., Wang, Y., Han, L., Lei, Z., Wang, J., Bao, W., & Chang, L. (2020). Upcycling coal liquefaction residue into sulfur-rich activated carbon for efficient Hg0 removal from coal-fired flue gas. Fuel Processing Technology, 206.

    Google Scholar 

  • Chen, K., Zhang, Z., Xia, K., Zhou, X., Guo, Y., & Huang, T. (2019). Facile synthesis of thiol-functionalized magnetic activated carbon and application for the removal of mercury(II) from aqueous solution. ACS Omega, 4, 8568–8579.

    Article  Google Scholar 

  • Chunlan, L., Shaoping, X., Yixiong, G., Shuqin, L., & Changhou, L. (2005). Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH. Carbon, 43, 2295–2301.

    Article  Google Scholar 

  • Dash, S., Chaudhuri, H., Gupta, R., Nair, U. G., & Sarkar, A. (2017). Fabrication and application of low-cost thiol functionalized coal fly ash for selective adsorption of heavy toxic metal ions from water. Industrial and Engineering Chemistry Research, 56, 1461–1470.

    Article  Google Scholar 

  • Demirbas, E. (2002). Removal of Ni(II) from aqueous solution by adsorption onto hazelnut shell activated carbon: Equilibrium studies. Bioresource Technology, 84, 291–293.

    Article  Google Scholar 

  • Deng, L., Su, Y., Su, H., Wang, X., & Zhu, X. (2007). Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. Journal of Hazardous Materials, 143, 220–225.

    Article  Google Scholar 

  • Diamantopoulou, I., Skodras, G., & Sakellaropoulos, G. P. (2010). Sorption of mercury by activated carbon in the presence of flue gas components. Fuel Processing Technology, 91, 158–163.

    Article  Google Scholar 

  • Dimitrova, S. (1996). Metal sorption on blast furnace slag. Water Research, 30, 228–232.

    Article  Google Scholar 

  • Ding, L., Zou, B., Gao, W., Liu, Q., Wang, Z., Guo, Y., Wang, X., & Liu, Y. (2014). Adsorption of rhodamine-B from aqueous solution using treated rice husk-based activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 446, 1–7.

    Article  Google Scholar 

  • Dong, L., Liu, W., Jiang, R., & Wang, Z. (2016). Study on the adsorption mechanism of activated carbon removing low concentrations of heavy metals. Desalination and Water Treatment, 57, 7812–7822.

    Article  Google Scholar 

  • El Qada, E. N., Allen, S. J., & Walker, G. M. (2006). Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm. Chemical Engineering Journal, 124, 103–110.

    Article  Google Scholar 

  • Elkady, M., Shokry, H., & Hamad, H. (2020). New activated carbon from mine coal for adsorption of dye in simulated water or multiple heavy metals in real wastewater. Materials, 13, 2498.

    Article  Google Scholar 

  • Erto, A., Giraldo, L., Lancia, A., & Moreno-Piraján, J. C. (2013). A comparison between a low-cost sorbent and an activated carbon for the adsorption of heavy metals from water. Water, Air, and Soil Pollution, 224.

    Google Scholar 

  • Fan, X., Li, C., Zeng, G., Gao, Z., Chen, L., Zhang, W., & Gao, H. (2010). Removal of gas-phase element mercury by activated carbon fiber impregnated with CeO2. Energy and Fuels, 24, 4250–4254.

    Article  Google Scholar 

  • Feng, D., Van Deventer, J. S. J., & Aldrich, C. (2004). Removal of pollutants from acid mine wastewater using metallurgical by-product slags. Separation and Purification Technology, 40, 61–67.

    Article  Google Scholar 

  • Filho, N. L. D., Gushikem, Y., & Polito, W. L. (1995). 2-Mercaptobenzothiazole clay as matrix for sorption and preconcentration of some heavy metals from aqueous solution. Analytica Chimica Acta, 306, 167–172.

    Article  Google Scholar 

  • Fowle, D. A., & Fein, J. B. (1999). Competitive adsorption of metal cations onto two gram positive bacteria: Testing the chemical equilibrium model. Geochimica et Cosmochimica Acta, 63, 3059–3067.

    Article  Google Scholar 

  • Gao, S., Liu, L., Tang, Y., Jia, D., Zhao, Z., & Wang, Y. (2016). Coal based magnetic activated carbon as a high performance adsorbent for methylene blue. Journal of Porous Materials, 23, 877–884.

    Article  Google Scholar 

  • Ghasemi, Z., Sourinejad, I., Kazemian, H., Hadavifar, M., Rohani, S., & Younesi, H. (2020). Kinetics and thermodynamic studies of Cr(VI) adsorption using environmental friendly multifunctional zeolites synthesized from coal fly ash under mild conditions. Chemical Engineering Communications, 207, 808–825.

    Article  Google Scholar 

  • Gode, F., & Pehlivan, E. (2005). Adsorption of Cr(III) ions by Turkish brown coals. Fuel Processing Technology, 86, 875–884.

    Article  Google Scholar 

  • Golovina, V. V., Eremina, A. O., Chesnokov, N. V., & Sobolev, A. A. (2018). Thermally activated Brown and Black coals as the sorbents of chromium(VI) from aqueous solutions. Solid Fuel Chemistry, 52, 240–246.

    Article  Google Scholar 

  • González Vázquez, O. F., Del Rosario Moreno Virgen, M., Hernández Montoya, V., Tovar Gómez, R., Alcántara Flores, J. L., Pérez Cruz, M. A., & Montes Morán, M. A. (2016). Adsorption of heavy metals in the presence of a magnetic field on adsorbents with different magnetic properties. Industrial and Engineering Chemistry Research, 55, 9323–9331.

    Article  Google Scholar 

  • Gopalakrishnan, A., Krishnan, R., Thangavel, S., Venugopal, G., & Kim, S. J. (2015). Removal of heavy metal ions from pharma-effluents using graphene-oxide nanosorbents and study of their adsorption kinetics. Journal of Industrial and Engineering Chemistry, 30, 14–19.

    Article  Google Scholar 

  • Hsi, H. C., Chen, S., Rostam-Abadi, M., Rood, M. J., Richardson, C. F., Carey, T. R., & Chang, R. (1998). Preparation and evaluation of coal-derived activated carbons for removal of mercury vapor from simulated coal combustion flue fases. Energy and Fuels, 12, 1061–1070.

    Article  Google Scholar 

  • Hsiao, H. W., Ullrich, S. M., & Tanton, T. W. (2011). Burdens of mercury in residents of Temirtau, Kazakhstan. I: Hair mercury concentrations and factors of elevated hair mercury levels. Science of the Total Environment, 409, 2272–2280.

    Article  Google Scholar 

  • Huo, Q., Wang, Y., Chen, H., Han, L., Wang, J., Bao, W., Chang, L., & Xie, K. (2019). ZnS/AC sorbent derived from the high sulfur petroleum coke for mercury removal. Fuel Processing Technology, 191, 36–43.

    Article  Google Scholar 

  • IARC. (2012). Monographs on the evaluation of carcinogenic risks to humans: Radiation (p. 274). World Health Organization.

    Google Scholar 

  • Ioannidou, O., & Zabaniotou, A. (2007). Agricultural residues as precursors for activated carbon production-a review. Renewable and Sustainable Energy Reviews, 11, 1966–2005.

    Article  Google Scholar 

  • Jawad, A. H., Mehdi, Z. S., Ishak, M. A. M., & Ismail, K. (2018). Large surface area activated carbon from low-rank coal via microwave-assisted KOH activation for methylene blue adsorption. Desalination and Water Treatment, 110, 239–249.

    Article  Google Scholar 

  • Jibril, B., Houache, O., Al-Maamari, R., & Al-Rashidi, B. (2008). Effects of H3PO4 and KOH in carbonization of lignocellulosic material. Journal of Analytical and Applied Pyrolysis, 83, 151–156.

    Article  Google Scholar 

  • Joseph, L., Jun, B. M., Flora, J. R. V., Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142–159.

    Article  Google Scholar 

  • Juang, R. S., Yei, Y. C., Liao, C. S., Lin, K. S., Lu, H. C., Wang, S. F., & Sun, A. C. (2018). Synthesis of magnetic Fe3O4/activated carbon nanocomposites with high surface area as recoverable adsorbents. Journal of the Taiwan Institute of Chemical Engineers, 90, 51–60.

    Article  Google Scholar 

  • Kadirvelu, K., Thamaraiselvi, K., & Namasivayam, C. (2001). Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresource Technology, 76, 63–65.

    Article  Google Scholar 

  • Kadlec, O., Varhaníková, A., & Zukal, A. (1970). Structure of pores of active carbons prepared by water-vapour and zinc-dichloride activation. Carbon, 8, 321–331.

    Article  Google Scholar 

  • Kalaruban, M., Loganathan, P., Nguyen, T. V., Nur, T., Hasan Johir, M. A., Nguyen, T. H., Trinh, M. V., & Vigneswaran, S. (2019). Iron-impregnated granular activated carbon for arsenic removal: Application to practical column filters. Journal of Environmental Management, 239, 235–243.

    Article  Google Scholar 

  • Karabulut, S., Karabakan, A., Denizli, A., & Yürüm, Y. (2001). Cadmium (II) and mercury (II) removal from aquatic solutions with low-rank Turkish coal. Separation Science and Technology, 36, 3657–3671.

    Article  Google Scholar 

  • Khulbe, K. C., & Matsuura, T. (2018). Removal of heavy metals and pollutants by membrane adsorption techniques. Applied Water Science, 8.

    Google Scholar 

  • Kobya, M. (2004). Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: Kinetic and equilibrium studies. Bioresource Technology, 91, 317–321.

    Article  Google Scholar 

  • Kuroki, A., Hiroto, M., Urushihara, Y., Horikawa, T., Sotowa, K. I., & Alcántara Avila, J. R. (2019). Adsorption mechanism of metal ions on activated carbon. Adsorption, 25, 1251–1258.

    Article  Google Scholar 

  • Lafferty, C., & Hobday, M. (1990). The use of low rank brown coal as an ion exchange material. 1. Basic parameters and the ion exchange mechanism. Fuel, 69, 78–83.

    Article  Google Scholar 

  • Lakatos, J., Brown, S. D., & Snape, C. E. (2002). Coals as sorbents for the removal and reduction of hexavalent chromium from aqueous waste streams. Fuel, 81, 691–698.

    Article  Google Scholar 

  • Li, J., Xing, X., Li, J., Shi, M., Lin, A., Xu, C., Zheng, J., & Li, R. (2018a). Preparation of thiol-functionalized activated carbon from sewage sludge with coal blending for heavy metal removal from contaminated water. Environmental Pollution, 234, 677–683.

    Article  Google Scholar 

  • Li, L., Sun, F., Gao, J., Wang, L., Pi, X., & Zhao, G. (2018b). Broadening the pore size of coal-based activated carbon: Via a washing-free chem-physical activation method for high-capacity dye adsorption. RSC Advances, 8, 14488–14499.

    Article  Google Scholar 

  • Li, Q., Zhai, J., Zhang, W., Wang, M., & Zhou, J. (2007). Kinetic studies of adsorption of Pb(II), Cr(III) and cu(II) from aqueous solution by sawdust and modified peanut husk. Journal of Hazardous Materials, 141, 163–167.

    Article  Google Scholar 

  • Li, W. G., Gong, X. J., Wang, K., Zhang, X. R., & Fan, W. B. (2014). Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon. Bioresource Technology, 165, 166–173.

    Article  Google Scholar 

  • Lillo-Ródenas, M. A., Cazorla-Amorós, D., & Linares-Solano, A. (2003). Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism. Carbon, 41, 267–275.

    Article  Google Scholar 

  • Linares-Solano, A., Lillo-Ródenas, M. A., Marco-Lozar, J. P., Kunowsky, M., & Romero-Anaya, A. J. (2014). NaOH and KOH for preparing activated carbons used in energy and environmental applications. Research and Applications for Energy, the Environment, and Economics, 20, 59–92.

    Google Scholar 

  • Liu, D., Gao, J., Cao, Q., Wu, S., & Qin, Y. (2017). Improvement of activated carbon from Jixi bituminous coal by air preoxidation. Energy and Fuels, 31, 1406–1415.

    Article  Google Scholar 

  • Liu, D. D., Jia, B. Y., Li, S., Dong, L. J., Gao, J. H., & Qin, Y. K. (2019). Effect of pyrolysis conditions on the improvement of the physicochemical structure of activated carbon obtained from Jixi bituminous coal. Asia-Pacific Journal of Chemical Engineering, 14, 1–12.

    Article  Google Scholar 

  • Lopez, F. A., Perez, C., Sainz, E., & Alonso, M. (1995). Adsorption of Pb2+ on blast furnace sludge. Journal of Chemical Technology & Biotechnology, 62, 200–206.

    Article  Google Scholar 

  • Lv, X., Zhang, T., Luo, Y., Zhang, Y., Wang, Y., & Zhang, G. (2020). Study on carbon nanotubes and activated carbon hybrids by pyrolysis of coal. Journal of Analytical and Applied Pyrolysis, 146, 104717.

    Article  Google Scholar 

  • Malamis, S., & Katsou, E. (2013). A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. Journal of Hazardous Materials, 252–253, 428–461.

    Article  Google Scholar 

  • Malik, R., Ramteke, D. S., & Wate, S. R. (2007). Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Management, 27, 1129–1138.

    Article  Google Scholar 

  • Malkoc, E., & Nuhoglu, Y. (2005). Investigations of nickel(II) removal from aqueous solutions using tea factory waste. Journal of Hazardous Materials, 127, 120–128.

    Article  Google Scholar 

  • Min, H., Ahmad, T., & Lee, S. S. (2017). Mercury adsorption characteristics as dependent upon the physical properties of activated carbon. Energy and Fuels, 31, 724–729.

    Article  Google Scholar 

  • Mnasri-Ghnimi, S., & Frini-Srasra, N. (2019). Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Applied Clay Science, 179.

    Google Scholar 

  • Mouni, L., Merabet, D., Bouzaza, A., & Belkhiri, L. (2011). Adsorption of Pb(II) from aqueous solutions using activated carbon developed from apricot stone. Desalination, 276, 148–153.

    Article  Google Scholar 

  • Musyoka, N. M., Wdowin, M., Rambau, K. M., Franus, W., Panek, R., Madej, J., & Czarna-Juszkiewicz, D. (2020). Synthesis of activated carbon from high-carbon coal fly ash and its hydrogen storage application. Renewable Energy, 155, 1264–1271.

    Article  Google Scholar 

  • Niu, T., Zhou, J., Zhang, C., & Li, S. (2018). Fast removal of methylene blue from aqueous solution using coal-based activated carbon. RSC Advances, 8, 26978–26986.

    Article  Google Scholar 

  • Orumwense, F. F. O. (1996). Removal of lead from water by adsorption on a kaolinitic clay. Journal of Chemical Technology and Biotechnology, 65, 363–369.

    Article  Google Scholar 

  • Papandreou, A., Stournaras, C. J., & Panias, D. (2007). Copper and cadmium adsorption on pellets made from fired coal fly ash. Journal of Hazardous Materials, 148, 538–547.

    Article  Google Scholar 

  • Patnukao, P., Kongsuwan, A., & Pavasant, P. (2008). Batch studies of adsorption of copper and lead on activated carbon from Eucalyptus camaldulensis Dehn. Bark. Journal of Environmental Sciences, 20, 1028–1034.

    Article  Google Scholar 

  • Rajakovic, L. V. (1992). Sorption of arsenic onto activated carbon impregnated with metallic silver and copper. Separation Science and Technology, 27, 1423–1433.

    Article  Google Scholar 

  • Rao, K., Mohapatra, M., Anand, S., & Venkateswarlu, P. (2011). Review on cadmium removal from aqueous solutions. International Journal of Engineering, Science and Technology, 2, 81–103.

    Article  Google Scholar 

  • Rashidi, N. A., & Yusup, S. (2016). Overview on the potential of coal-based bottom ash as low-cost adsorbents. ACS Sustainable Chemistry and Engineering, 4, 1870–1884.

    Article  Google Scholar 

  • Renu, Agarwal, M., & Singh, K. (2017). Heavy metal removal from wastewater using various adsorbents: A review. Journal of Water Reuse and Desalination, 7, 387–419.

    Article  Google Scholar 

  • Sen Gupta, S., & Bhattacharyya, K. G. (2011). Kinetics of adsorption of metal ions on inorganic materials: A review. Advances in Colloid and Interface Science, 162, 39–58.

    Article  Google Scholar 

  • Simate, G. S., Maledi, N., Ochieng, A., Ndlovu, S., Zhang, J., & Walubita, L. F. (2016). Coal-based adsorbents for water and wastewater treatment. Journal of Environmental Chemical Engineering, 4, 2291–2312.

    Article  Google Scholar 

  • Sočo, E., & Kalembkiewicz, J. (2013). Adsorption of nickel(II) and copper(II) ions from aqueous solution by coal fly ash. Journal of Environmental Chemical Engineering, 1, 581–588.

    Article  Google Scholar 

  • Sreenivas, K. M., Inarkar, M. B., Gokhale, S. V., & Lele, S. S. (2014). Re-utilization of ash gourd (Benincasa hispida) peel waste for chromium (VI) biosorption: Equilibrium and column studies. Journal of Environmental Chemical Engineering, 2, 455–462.

    Article  Google Scholar 

  • Sulaymon, A. H., Mohammed, T. J., & Al-najar, J. (2012). Equilibrium and kinetics studies of adsorption of heavy metals onto activated carbon. Canadian Journal on Chemical Engineering & Technology, 3, 86–92.

    Google Scholar 

  • Sun, J., Hippo, E. J., Marsh, H., O’Brien, W. S., & Crelling, J. C. (1997). Activated carbon produced from an Illinois basin coal. Carbon, 35, 341–352.

    Article  Google Scholar 

  • Taraba, B., & Veselá, P. (2016). Sorption of Lead(II) ions on natural coals and activated carbon: Mechanistic, kinetic, and thermodynamic aspects. Energy and Fuels, 30, 5846–5853.

    Article  Google Scholar 

  • Taşar, Ş., Kaya, F., & Özer, A. (2014). Biosorption of lead(II) ions from aqueous solution by peanut shells: Equilibrium, thermodynamic and kinetic studies. Journal of Environmental Chemical Engineering, 2, 1018–1026.

    Article  Google Scholar 

  • Tian, L., Li, C., Li, Q., Zeng, G., Gao, Z., Li, S., & Fan, X. (2009). Removal of elemental mercury by activated carbon impregnated with CeO2. Fuel, 88, 1687–1691.

    Article  Google Scholar 

  • Uddin, A., Ozaki, M., Sasaoka, E., & Wu, S. (2009). Temperature-programmed decomposition desorption of mercury species over activated Arbon sorbents for mercury removal from coal-derived fuel gas. Energy and Fuels, 23, 4710–4716.

    Article  Google Scholar 

  • Vu, D. H., Bui, H. B., Bui, X. N., An-Nguyen, D., Le, Q. T., Do, N. H., & Nguyen, H. (2020). A novel approach in adsorption of heavy metal ions from aqueous solution using synthesized MCM-41 from coal bottom ash. International Journal of Environmental Analytical Chemistry, 100, 1226–1244.

    Article  Google Scholar 

  • Wang, L., Sun, F., Gao, J., Pi, X., Pei, T., Qie, Z., Zhao, G., & Qin, Y. (2018a). A novel melt infiltration method promoting porosity development of low-rank coal derived activated carbon as supercapacitor electrode materials. Journal of the Taiwan Institute of Chemical Engineers, 91, 588–596.

    Article  Google Scholar 

  • Wang, L., Sun, F., Gao, J., Pi, X., Qu, Z., & Zhao, G. (2018b). Adjusting the porosity of coal-based activated carbons based on a catalytic physical activation process for gas and liquid adsorption. Energy and Fuels, 32, 1255–1264.

    Article  Google Scholar 

  • Wang, X. L., Shen, J., Niu, Y. X., Wang, Y. G., Liu, G., & Sheng, Q. T. (2018c). Removal of phenol by powdered activated carbon prepared from coal gasification tar residue. Environmental Technology (United Kingdom), 39, 694–701.

    Google Scholar 

  • Wasewar, K. L., Kumar, P., Chand, S., Padmini, B. N., & Teng, T. T. (2010). Adsorption of cadmium ions from aqueous solution using granular activated carbon and activated clay. Clean—Soil, Air, Water, 38, 649–656.

    Google Scholar 

  • Witek-Krowiak, A., Szafran, R. G., & Modelski, S. (2011). Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination, 265, 126–134.

    Article  Google Scholar 

  • Wu, F. C., Wu, P. H., Tseng, R. L., & Juang, R. S. (2010). Preparation of activated carbons from unburnt coal in bottom ash with KOH activation for liquid-phase adsorption. Journal of Environmental Management, 91, 1097–1102.

    Article  Google Scholar 

  • Wu, J., Zhao, Z., Huang, T., Sheng, P., Zhang, J., Tian, H., Zhao, X., Zhao, L., He, P., Ren, J., & Gao, K. (2017a). Removal of elemental mercury by Ce-Mn co-modified activated carbon catalyst. Catalysis Communications, 93, 62–66.

    Article  Google Scholar 

  • Wu, M., Shi, L., & Mi, J. (2017b). Preparation and desulfurization kinetics of activated carbons from semi-coke of coal liquefaction residual. Journal of Thermal Analysis and Calorimetry, 129, 1593–1603.

    Article  Google Scholar 

  • Xu, Y., & Chai, X. (2018). Characterization of coal gasification slag-based activated carbon and its potential application in lead removal. Environmental Technology (United Kingdom), 39, 382–391.

    Google Scholar 

  • Yantasee, W., Lin, Y., Fryxell, G. E., Alford, K. L., Busche, B. J., & Johnson, C. D. (2004). Selective removal of copper(II) from aqueous solutions using fine-grained activated carbon functionalized with amine. Industrial and Engineering Chemistry Research, 43, 2759–2764.

    Article  Google Scholar 

  • Yi, Z., Yao, J., Zhu, M., Chen, H., Wang, F., & Liu, X. (2016). Kinetics, equilibrium, and thermodynamics investigation on the adsorption of lead(II) by coal-based activated carbon. Springerplus, 5.

    Google Scholar 

  • Youssef, A. M., El-Wakil, A. M., El-Sharkawy, E. A., Farag, A. B., & Tollan, K. (1996). Adsorption of heavy metals on coal-based activated carbons. Adsorption Science and Technology, 13, 115–125.

    Article  Google Scholar 

  • Zhang, H., Niu, J., Yin, X., Guo, Y., & Cheng, F. (2020). Role of inherent pyrite in coal on physicochemical structure of activated carbon and adsorption capacity. Fuel, 262, 116527.

    Article  Google Scholar 

  • Zhong, L., Zhang, Y., Ji, Y., Norris, P., & Pan, W. P. (2016). Synthesis of activated carbon from coal pitch for mercury removal in coal-fired power plants. Journal of Thermal Analysis and Calorimetry, 123, 851–860.

    Article  Google Scholar 

  • Zou, Y., & Han, B. X. (2001). High-surface-area activated carbon from Chinese coal. Energy and Fuels, 15, 1383–1386.

    Article  Google Scholar 

  • Zouboulis, A. I., & Kydros, K. A. (1993). Use of red mud for toxic metals removal: The case of nickel. Journal of Chemical Technology & Biotechnology, 58, 95–101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Girhe, P., Barai, D., Bhanvase, B. (2021). Adsorption of Metals Using Activated Carbon Derived from Coal. In: Jyothi, R.K., Parhi, P.K. (eds) Clean Coal Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-68502-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68502-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68501-0

  • Online ISBN: 978-3-030-68502-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics