Skip to main content

On the Generalized Li’s Criterion Equivalent to the Riemann Hypothesis and Its First Applications

  • Conference paper
  • First Online:
Schrödinger Operators, Spectral Analysis and Number Theory

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 348))

Abstract

We present some new results and first applications of the recently established by us (Ukrainian Math. J. 2014, 66, pp. 371–383) generalized Li’s criterion equivalent to the Riemann Hypothesis. This criterion is the statement that the Riemann hypothesis is equivalent to the non-negativity of the sums over non-trivial Riemann zeroes \( \rho \) \( \sum\nolimits_{\rho } {(1 - (\frac{\rho + b}{\rho - b - 1})^{n} )} \) (generalized Li’s coefficients), which are equal to the derivatives \( \frac{(2b + 1)}{(n - 1)!}\frac{{d^{m} }}{{dz^{m} }}((z + b)^{m - 1} \ln (\xi (z)))|_{z = 1 + b} \) of the Riemann \( \xi \)-function, for some real b > −1/2 (if so, this takes place for all such b) and all m = 1, 2, 3 … Namely, we give an expression of the generating function for the generalized Li’s coefficients, and, assuming RH, for their asymptotic for large n. As the first applications, we show that for any positive integer n there is such a value of bn (depending on n) that for all \( m \le n \) and b > bn, the inequality \( \frac{{d^{m} }}{{dz^{m} }}((z + b)^{m - 1} \ln (\xi (z)))|_{z = 1 + b} \ge 0 \) does hold true.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.K. Sekatskii, Generalized Bombieri–Lagarias’ theorem and generalized Li’s criterion with its arithmetic interpretation. Ukrainian Math. J. 66, 371–383 (2014)

    Google Scholar 

  2. E. Bombieri, J.C. Lagarias, Complements to Li’s criterion for the Riemann hypothesis. J. Numb. Theor. 77, 274–287 (1999)

    Google Scholar 

  3. X.-E. Li, The positivity of a sequence of numbers and the Riemann hypothesis. J. Numb. Theor. 65, 325–333 (1997)

    Google Scholar 

  4. E.C. Titchmarsh, E.R. Heath-Brown, The Theory of the Riemann Zeta-Function (Oxford: Clarendon Press, 1988)

    Google Scholar 

  5. S.K. Sekatskii, S. Beltraminelli, D. Merlini, On equalities involving integrals of the logarithm of the Riemann \( \varsigma \)-function and equivalent to the Riemann hypothesis. Ukrainian Math. J. 64, 218–228 (2012)

    Google Scholar 

  6. E.C. Titchmarsh, The Theory of Functions (Oxford Univ. Press, Oxford, 1939)

    Google Scholar 

  7. F.T. Wang, A note on the Riemann zeta-function. Bull. Am. Math. Soc. 52, 319–321 (1946)

    Google Scholar 

  8. S.K. Sekatskii, S. Beltraminelli, D. Merlini, On equalities involving integrals of the logarithm of the Riemann \( \varsigma \)-function with exponential weight which are equivalent to the Riemann hypothesis. Int. J. Anal. Art. ID 980728 (2015)

    Google Scholar 

  9. S.K. Sekatskii, Analysis of Voros criterion equivalent to the Riemann hypothesis. Analysis, Geometry and Number Theory, no. 1 (2016), pp. 95–102

    Google Scholar 

  10. S.K. Sekatskii, First applications of generalized Li’s criterion to study the Riemann zeta-function zeroes location. arXiv:1404.7276

  11. S.K. Sekatskii, Generating functions for the generalized Li’s sums. arXiv:1411.6209

  12. A. Erdelyi (ed.), Higher transcendental functions. Based, in Part, on Notes Left by Harry Bateman, vol. 1 (McGraw Hill, N.-Y., 1953)

    Google Scholar 

  13. Y.L. Luke, The Special Functions and Their Approximations, vol. 1 (Academic, N.-Y., 1969)

    Google Scholar 

  14. K.A. Broughan, Equivalents of the Riemann Hypothesis, vol. 2. Encyclopedia of Mathematics and its Applications (Cambridge Univ. Press, Cambridge, 2017), p. 165

    Google Scholar 

  15. M.W. Coffey, Toward verification of the Riemann hypothesis: application of the Li criterion. Math. Phys. Anal. Geom. 8, 211–255 (2005)

    Google Scholar 

  16. M.W. Coffey, The theta-Laguerre calculus formulation of the Li/Keiper constants. J. Approx. Theor. 146, 267–275 (2007)

    Google Scholar 

  17. M.W. Coffey, On certain sums over the non-trivial zeta zeroes. Proc. Roy. Soc. A466, 3679–3692 (2010)

    Google Scholar 

  18. I.S. Gradshtein, I.M. Ryzhik, Tables of Integrals, Series and Products (Academic, N.-Y., 1990)

    Google Scholar 

  19. G. Szegö, Orthogonal Polynomials (AMS, Providence, R.I., 1939)

    Google Scholar 

  20. Y.-H. He, V. Jejjala, D. Ninic, Eigenvalue density, Li’s positivity, and the critical strip. arXiv:0903.4321v2. [math-ph]

  21. A. Voros, Sharpening of Li’s criterion for the Riemann hypothesis. Math. Phys. Anal. Geom. 9, 53–63 (2006)

    Google Scholar 

  22. T.J. Rivlin, Chebyshev Polynomials (Wiley, N.-Y., 1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sekatskii .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Generating Function for the Generalized Li’s Sums

Theorem 4

For any real b, \( \sigma \), \( \sigma \ne - b \), the sums \( \lambda_{n,b,\sigma } : = \sum\limits_{\rho } {(1 - (1 + \frac{2b + 2\sigma }{\rho - b - 2\sigma })^{n} )} \)\( = \sum\limits_{\rho } {(1 - (\frac{\rho + b}{\rho - b - 2\sigma })^{n} )} \) are given by the coefficients of the following Taylor expansion:

$$ \ln (\xi \left( {b + 2\sigma + \frac{(2b + 2\sigma )z}{1 - z}} \right)) = \ln (\xi (b + 2\sigma )) + \sum\limits_{n = 1}^{\infty } {\frac{{\lambda_{n,b,\sigma } }}{n}z^{n} } $$
(A1)

Proof

Proof is a straightforward generalization of the approach given in [3]. We start from the well known property concerning the representation of the Riemann \( \xi \)-function as an infinite Hadamard product over its zeroes [4]

$$ \xi (s) = \frac{1}{2}\prod_{\rho } (1 - \frac{s}{\rho }) $$
(A2)

and then introduce the function \( \xi^{*} (z): = \xi (z + b + 2\sigma ) \). We have

$$ \xi^{*}(s) = \xi (b + 2\sigma ) \cdot \prod_{\rho *} (1 - \frac{s}{{\rho^{*} }}) $$
(A3)

where \( \rho^{*} = \rho - b - 2\sigma \) are zeroes of \( \xi^{*} (z) \). (This, similarly to (A2), is a direct consequence of the general Hadamard product formula and the relation \( \frac{\xi '}{\xi }(b + 2\sigma ) = \sum\limits_{\rho } {\frac{1}{b + 2\sigma - \rho }} \) [4]. Now we take \( s = - \frac{(2b + 2\sigma )z}{z - 1} \) hence \( 1 - \frac{s}{\rho *} = \) \( = \frac{{1 - z(1 + \frac{2b + 2\sigma }{\rho *})}}{1 - z} \). We have, by taking a logarithm and applying Taylor expansion \( \ln (1 - \frac{s}{\rho *}) = \ln (1 - z(1 + \frac{2\sigma + 2b}{\rho *})) - \ln (1 - z) = \sum\nolimits_{n = 1}^{\infty } {\frac{1}{n}(1 - (1 + \frac{2b + 2\sigma }{\rho *}))^{n} )z^{n} } \), so that, according to Eq. (A3), the sums \( \lambda_{n,b,\sigma } : = \sum\nolimits_{\rho } {(1 - (1 + \frac{2b + 2\sigma }{\rho - b - 2\sigma })^{n} )} \) in question are given by Taylor expansion of the function \( \ln (\xi^{*} (\frac{(2b + 2\sigma )z}{1 - z})) \)\( = \ln (\xi (b + 2\sigma + \frac{(2b + 2\sigma )z}{1 - z})) \)\( = \ln (\xi (\frac{b + 2\sigma + bz}{1 - z})) \) at the point z = 0: \( \ln (\xi \left( {b + 2\sigma + \frac{(2b + 2\sigma )z}{1 - z}} \right)) = \ln (\xi (b + 2\sigma )) + \sum\nolimits_{n = 1}^{\infty } {\frac{{\lambda_{n,b,\sigma } }}{n}z^{n} } \).

In particular, if we take \( b = - 2\sigma \ne 0 \), we have the function \( \ln (\xi (\frac{2\sigma z}{z - 1})) \) which is quite similar to the original Li’s function \( \ln (\xi (\frac{z}{z - 1})) \): the non-negativity of all coefficients of the expansion \( \ln (\xi \left( {\frac{2\sigma z}{z - 1}} \right)) = - \ln 2 + \sum\nolimits_{n = 1}^{\infty } {\frac{{\lambda_{n, - 2\sigma ,\sigma } }}{n}z^{n} } \) for some \( 0 < \sigma < 1/2 \) is equivalent to the statement that there are no zeroes with \( \text{Re} \rho \le \sigma \).

Appendix 2: Asymptotic of Generalized Li’s Sums Assuming the Riemann Hypothesis

Let us now calculate the asymptotics of the sums \( \lambda_{n,b,1/2} = \sum\limits_{\rho } {(1 - \left( {\frac{\rho + b}{\rho - 1 - b}} \right)^{n} )} \) over the non-trivial zeroes of the Riemann zeta-function for large n (and thus also an asymptotics of the derivatives related with them) assuming the Riemann hypothesis.

Theorem 5

Assume the Riemann hypothesis. Then for large enough n, for any real fixed \( b \ne - 1/2 \)

$$ \begin{aligned} \lambda_{n,b,1/2} = \sum\limits_{\rho } {(1 - \left( {\frac{\rho + b}{\rho - 1 - b}} \right)^{n} )} = \sum\limits_{\rho } {(1 - \left( {\frac{\rho - b - 1}{\rho + b}} \right)}^{n} ) = \hfill \\ \frac{|2b + 1|}{2}n\ln n + \frac{|2b + 1|}{2}(\gamma - 1 - \ln \frac{2\pi }{|2b + 1|})n + o(n) \hfill \\ \end{aligned} $$
(A4)

Proof

The proof is a straightforward generalization of the method presented in Coffey paper [17] (see also [20]; a similar asymptotics for Li’s sums was also obtained by Voros with another method [21]). Let us first put \( b > - 1/2 \). Using \( \rho = 1/2 + iT \), we write for an argument \( \vartheta \) of the function \( \frac{\rho + b}{\rho - b - 1} \):

$$ \tan \vartheta = - \frac{(2b + 1)T}{{T^{2} - 1/4 - b - b^{2} }} = - \frac{(2b + 1)T}{{T^{2} - (2b + 1)^{2} /4}} $$
(A5)

Correspondingly, \( \sin \vartheta = - \frac{(2b + 1)T}{{T^{2} + (2b + 1)^{2} /4}} \) and \( \cos \vartheta = \)\( \frac{{T^{2} - (2b + 1)^{2} /4}}{{T^{2} + (2b + 1)^{2} /4}} \); here we used \( (T^{2} - 1/4 - b - b^{2} )^{2} + (2b + 1)^{2} T^{2} = (T^{2} + 1/4 + b + b^{2} )^{2} \). The derivative \( d\vartheta /dT \) is found from (A5): \( \frac{d\vartheta }{dT} = \frac{2b + 1}{{T^{2} + (2b + 1)^{2} /4}} \), and now we are in a position to calculate the sum in question on Riemann hypothesis: \( \lambda_{n,b,1/2} = \varSigma_{\rho } (1 - (\frac{\rho + b}{\rho - b - 1})^{n} ) = 2\sum\nolimits_{\rho } {(1 - \cos (n\vartheta_{\rho } ))} \) so that, expressed as an integral over the number of non-trivial zeroes dN, \( k_{n,b} = 2\int\nolimits_{0}^{\infty } {(1 - \cos (n\vartheta (T)))dN} \). Integrating by parts, we obtain

$$ k_{n,b} = 2\int\limits_{0}^{\infty } {(1 - \cos (n\vartheta (T)))dN} = - 2n\int\limits_{0}^{\infty } {\sin (n\vartheta )\frac{d\vartheta }{dT}N(T)dT} $$
(A6)

Below we will use the approximations [4]

$$ N(T) = \frac{T}{2\pi }\ln \frac{T}{2\pi } - \frac{T}{2\pi } + O(\ln T) $$
(A7)

\( \vartheta = - \frac{2b + 1}{T} + O(1/T^{3} ) \), \( \frac{d\vartheta }{dT} = \frac{2b + 1}{{T^{2} }} + O(1/T^{4} ) \) for the functions under the integral sign in (A6), and then will use the variable change \( y = \frac{(2b + 1)n}{T} \). This variable change implies \( \frac{1}{T} = \frac{y}{(2b + 1)n} \) hence all terms of the type \( O(\frac{1}{{T^{k} }}) \) with “larger than necessary” k will add only o(n) contributions to the integral value and can be neglected. Thus we get \( \lambda_{n,b,1/2} = 2n\int_{{T_{1} }}^{\infty } {\frac{(2b + 1)}{{T^{2} }}\sin (\frac{(2b + 1)n}{T})N(T)dT} + o(n) \) where T1 = 14, say (the first zero lies at ½ + i14.1347… [4]), and further \( k_{n,b} = 2\int_{0}^{{(2b + 1)n/T_{1} }} {\sin (y)N(\frac{(2b + 1)n}{y})dy} = - \frac{(2b + 1)n}{\pi }\int_{0}^{\infty } {\frac{\sin y}{y}(\ln \frac{2\pi y}{(2b + 1)n} + 1)dy} + o(n) \). Using examples N3.721.1 \( \int_{0}^{\infty } {\frac{\sin y}{y}dy} = \frac{\pi }{2} \) and N4.421.1 \( \int_{0}^{\infty } {\ln y\frac{\sin y}{y}dy} = - \frac{\pi }{2}\gamma \) from [18], we obtain Eq. (A4) for positive 2b + 1. The case b < −1/2 is quite similar with changes of signs whenever appropriate, and in this manner we finish the proof of Theorem 5.

This asymptotics depends only on the density of zeroes (A7) and thus can be elementarily modified for numerous other zeta-functions-of course, assuming correspondingly the generalized Riemann hypothesis.

Remark 6

Following [17, 20], the sum (derivative) in question can be rewritten, using \( \sin n\vartheta = \sin \vartheta \cdot U_{n - 1} (\cos \vartheta ) \), where Uk is the k-th Chebyshev polynomial of the second kind [19, 22], in a rather elegant form

$$ k_{n,b} = 2n\int\limits_{0}^{\infty } {\frac{{(2b + 1)^{2} T}}{{(T^{2} + (2b + 1)^{2} /4)^{2} }}U_{n - 1} (\frac{{T^{2} - (2b + 1)^{2} /4}}{{T^{2} + (2b + 1)^{2} /4}})N(T)dT} $$
(A8)

We will not use any properties of this polynomial below, but would like to note the next logical step which is the variable change \( x = \frac{{T^{2} - (2b + 1)^{2} /4}}{{T^{2} + (2b + 1)^{2} /4}} = 1 - \frac{{(2b + 1)^{2} /2}}{{T^{2} + (2b + 1)^{2} /4}} \). Clearly, \( dx = \frac{{T(2b + 1)^{2} }}{{(T^{2} + (2b + 1)^{2} /4)^{2} }}dT \) so that

$$ k_{n,b} = 2n\int\limits_{ - 1}^{1} {U_{n - 1} (x)N(x)dx} $$
(A9)

Using \( T = \frac{1}{2}(2b + 1)\sqrt {\frac{1 + x}{1 - x}} \) and limiting ourselves with the \( N(T) = \frac{T}{2\pi }\ln \frac{T}{2\pi } - \frac{T}{2\pi } + O(\ln T) \) precision, we may write \( N(x) = \frac{2b + 1}{4\pi }\sqrt {\frac{1 + x}{1 - x}} \ln (\frac{2b + 1}{4\pi }\sqrt {\frac{1 + x}{1 - x}} ) - \frac{2b + 1}{4\pi }\sqrt {\frac{1 + x}{1 - x}} + O(\ln \frac{1 + x}{1 - x}) \) which is to be substituted into (A5). Note, that integrals of the type \( \int_{ - 1}^{1} {U_{n} (x)(1 - x)^{\alpha } (1 + x)^{\beta } dx} \) quite naturally appear in some applications of the Chebyshev polynomials; see e.g. example N 7.347.2 of book [18].

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sekatskii, S.K. (2021). On the Generalized Li’s Criterion Equivalent to the Riemann Hypothesis and Its First Applications. In: Albeverio, S., Balslev, A., Weder, R. (eds) Schrödinger Operators, Spectral Analysis and Number Theory. Springer Proceedings in Mathematics & Statistics, vol 348. Springer, Cham. https://doi.org/10.1007/978-3-030-68490-7_12

Download citation

Publish with us

Policies and ethics