Skip to main content

Mechanical Properties

  • Chapter
  • First Online:
Applied Polymer Science

Abstract

Perhaps the most characteristic property of materials is their ability to withstand external stresses or imposed strains. For polymers, the response to stress or strain varies with time of loading, temperature and external environment to a greater extent compared to other materials, i.e. metals and ceramics. While metals at ambient conditions are elastic materials showing Hookean response, polymers are viscoelastic. The term viscoelastic means that the material has both elastic and viscous properties, i.e. a combination of these. This ‘dual nature’ makes the prediction of stress response and service lifetime of polymer products more complicated. Therefore, it is important, especially for product designers and those involved in determining if a plastic component can be used under a given stress state, that the mechanisms of stress response, yielding and fracture of polymers are understood. The factors that influence the mechanical properties of a polymer may be of external or internal nature. External factors are temperature, pressure, strain rate, type of loading, time of loading and environment. Internal factors include intramolecular structure, secondary bonds, molar mass and molar mass distribution, chain branching, copolymerisation, chemical or physical crosslinking, crystallinity and semicrystalline morphology, chain orientation, plasticisers, polymer blends and physical or chemical aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnelli, S., & Horsfall, I. (2013). Engineering Fracture Mechanics, 101, 59.

    Article  Google Scholar 

  • Aguikar-Vega, M. (2013). Chapter 21: Structure and mechanical properties of polymers. In E. Saldívar-Guerra & E. Vivaldo-Lima (Eds.), Handbook of polymer synthesis, characterization, and processing. New York: Wiley.

    Google Scholar 

  • Aldhufairi, H. S., & Olatunbosun, O. A. (2018). Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232, 1865.

    Google Scholar 

  • Allison, S. W., & Andrews, R. D. (1967). Journal of Applied Physics, 38, 4164.

    Article  ADS  Google Scholar 

  • Andean, L., Castellani, L., Castiglione, A., Mendogni, A., Rink, M., & Sacchetti, F. (2013). Engineering Fracture Mechanics, 101, 33.

    Article  Google Scholar 

  • Arbeiter, F., Pinter, G., Lang, R. W., & Frank, A. (2017). Fracture mechanics methods to assess the lifetime of thermoplastic pipes. In W. Grellmann & B. Langer (Eds.), Deformation and fracture behaviour of polymer materials. Berlin: Springer.

    Google Scholar 

  • Arridge, R. G. C. (1975). Mechanics of polymers. Fair Lawn: Oxford University Press.

    Google Scholar 

  • Awaja, F., Zhang, S., Tripathi, M., Nikiforov, A., & Pugno, N. (2016). Progress in Materials Science, 83, 536.

    Article  Google Scholar 

  • Bálány, T., Czigány, T., & Karger-Kocsis, J. (2010). Progress in Polymer Science, 35, 1257.

    Article  Google Scholar 

  • Banks, H. T., Hu, S., & Kenz, Z. R. (2011). Advances in Applied Mathematics and Mechanics, 3, 1.

    Article  MathSciNet  Google Scholar 

  • Bauwens-Crowlet, C., Bauwens, J.-C., & Homès, G. (1969). Journal of Polymer Science, Polymer Physics Edition, 7, 735.

    ADS  Google Scholar 

  • Bierögel, C., & Grellmann. (2014a). Fatigue loading of plastics – Introduction. In K.-F. Arndt & M. D. Lechner (Eds.), Polymer solids and polymer melts – Mechanical and thermomechanical properties of polymers (Vol. 6A3). Berlin: Springer.

    Google Scholar 

  • Bierögel, C., & Grellmann. (2014b). Tensile fatigue loading of thermoplastics – Applications. In K.-F. Arndt & M. D. Lechner (Eds.), Polymer solids and polymer melts – Mechanical and thermomechanical properties of polymers (Vol. 6A3). Berlin: Springer.

    Google Scholar 

  • Bierögel, C., & Grellmann. (2014c). Torsional fatigue strength – Application. In K.-F. Arndt & M. D. Lechner (Eds.), Polymer solids and polymer melts – Mechanical and thermomechanical properties of polymers (Vol. 6A3). Berlin: Springer.

    Google Scholar 

  • Birley, A. W., Haworth, B., & Batchelor, J. (1992). Physics of plastics, processing, properties and materials engineering. Munich: Carl Hanser.

    Google Scholar 

  • Bowman, K. (2004). Mechanical behaviour of materials. Hoboken: Wiley.

    Google Scholar 

  • Boyd, R. H. (1984). Macromolecules, 17, 903.

    Article  ADS  Google Scholar 

  • Bradley, W., Cantwell, W. J., & Kausch, H.-H. (1998). Mechanics of Time-Dependent Materials, 1, 248.

    Google Scholar 

  • Broitman, E. (2017). Tribology Letters, 65, 23.

    Article  Google Scholar 

  • Brooks, N. W., Ghazali, M., Duckett, R. A., Unwin, A. P., & Ward, I. M. (1999). Polymer, 40, 821.

    Article  Google Scholar 

  • Cagiao, M. E., Baltá-Calleja, F. J., Vanderdonckt, C., & Zachmann, H. G. (1993). Polymer, 34, 2024.

    Article  Google Scholar 

  • Case, J., & Chilver, A. H. (1959). Strength of materials, an introduction to the analysis of stress and strain. London: Edward Arnold Ltd.

    Google Scholar 

  • Chen, K., & Schweizer, K. S. (2011). Macromolecules, 44, 3988.

    Article  ADS  Google Scholar 

  • Chèriére, J. M., Bélec, L., & Gacougnolle, J. L. (1997). Polymer Engineering and Science, 37, 1664.

    Article  Google Scholar 

  • Corradini, P., Rosa, C. D., Guerra, G., & Petraccone, V. (1987). Macromolecules, 20, 3043.

    Article  ADS  Google Scholar 

  • Darras, O., & Séguéla, R. (1993). Journal of Polymer Science, Polymer Physics Edition, 31, 759.

    Article  ADS  Google Scholar 

  • Das, O., & Bhattacharyya, D. (2017). Development of polymeric biocomposites: Particulate incorporation in interphase generation and evaluation by Nanoindentation. In A. N. Netravali & K. L. Mittal (Eds.), Interface/interphase in polymer nanocomposites. Salem: Scrivener Publishing LLC.

    Google Scholar 

  • Deblieck, R. A. C., van Beek, D. J. M., Remerie, K., & Ward, I. M. (2011). Polymer, 52, 2979.

    Article  Google Scholar 

  • Degennes, P.-G. (1979). Scaling concepts in polymer physics. Ithaca: Cornell University Press.

    Google Scholar 

  • Devries, K. L., & Nuismer, R. J. (1985). ACS symposium series, vol. 285, Applied polymer science, Ch. 13, p. 277.

    Google Scholar 

  • Dinwoodie, J. M. (2000). Timber, its nature and behaviour (2nd ed.). London: E. & F. N. Spon.

    Google Scholar 

  • Duan, Y., Saigal, A., Greif, R., & Zimmermann, M. A. (2002). Polymer Engineering and Science, 42, 395.

    Article  Google Scholar 

  • Eremeeva, A. S. (1965). Mekhanika Polimerov, 1, 21.

    Google Scholar 

  • Fan, J., Fan, X., & Chen, A. (2017). Chapter 8: Dynamic mechanical behaviour of polymer materials. In F. Yilmaz (Ed.), Aspects of polyurethanes (p. 193). Zagreb: InntechOpen.

    Google Scholar 

  • Fellers, C. (2009). Pulp and paper chemistry and technology. In M. Ek, G. Gellerstedt, & G. Henriksson (Eds.), Pulp and paper physics and technology (Vol. 4). Berlin: De Gruyter.

    Google Scholar 

  • Findley, W. N., & Khosla, G. (1955). Journal of Applied Physics, 26, 821.

    Article  ADS  Google Scholar 

  • Foreman, J. P., Porter, D., Behzadi, S., Curtis, P. T., & Jones, F. R. (2010). Composites: Part A, 41, 1072.

    Article  Google Scholar 

  • Francois, D., Pineau, A., & Zaoui, A. (2013). Fracture mechanics. In Mechanical behaviour of materials volume II: Fracture mechanics and damage (p. 7). Berlin: Springer.

    Chapter  MATH  Google Scholar 

  • Gaucher-Miri, V., Elkoun, S., & Séguéla, R. (1997). Polymer Engineering and Science, 37, 1672.

    Article  Google Scholar 

  • Gedde, U. W., & Hedenqvist, M. S. (2019a). Rubber Elasticity. In Fundamental polymer science (chap. 3). Cham: Springer Nature Switzerland.

    Google Scholar 

  • Gedde, U. W., & Hedenqvist, M. S. (2019b). Chain orientation. In Fundamental polymer science (chap. 9). Cham: Springer Nature Switzerland.

    Google Scholar 

  • Gerets, B., Wenzel, M., Engelsing, K., & Bastian, M. (2017). Slow crack growth of polyethylene – Accelerated tests methods. In W. Grellmann & B. Langer (Eds.), Deformation and fracture behaviour of polymer materials. Berlin: Springer.

    Google Scholar 

  • Golovin, K., Kobaku, S. P. R., Lee, D. H., DiLoreto, E. T., Mabry, J. M., & Tuteja, A. (2016). Science Advances, 2, e1501496.

    Article  ADS  Google Scholar 

  • Grellman, W. (2001). New developments in toughness evaluation of polymers and compounds by fracture mechanics. In W. Grellman & S. Seidler (Eds.), Deformation and fracture behaviour of polymers (p. 3). Berlin: Springer.

    Chapter  Google Scholar 

  • Grellman, W., & Lach, R. (2001). Toughness and relaxation behaviour PMMA, PS and PC. In W. Grellman & S. Seidler (Eds.), Deformation and fracture behaviour of polymers (p. 193). Berlin: Springer.

    Chapter  Google Scholar 

  • Hedenqvist, M. S., Bharadwaj, R., & Boyd, R. H. (1998). Macromolecules, 31, 1556.

    Article  ADS  Google Scholar 

  • Hedenqvist, M. S., Yousefi, H., Malmström, E., Johansson, M., Hult, A., Gedde, U. W., Trollsås, M., & Hedrick, J. L. (2000). Polymer, 41, 1827.

    Article  Google Scholar 

  • Janssen, R. P. M., de Kanter, D., Govaert, L. E., & Meijer, H. E. H. (2008). Macromolecules, 41, 2520.

    Article  ADS  Google Scholar 

  • Karger-Kocsis, J. (1996). Polymer Engineering and Science, 36, 203.

    Article  Google Scholar 

  • Kausch, H.-H. (1987). Polymer fracture. Berlin: Springer.

    Google Scholar 

  • Kausch, H.-H., & Dettenmaier, M. (1982). Colloid and Polymer Science, 260, 120.

    Article  Google Scholar 

  • Kausch, H-H, Grein, C, Béguelin P, & Gensler, R. (2001). International conference on Fracture ICF10, ICF 1001–007.

    Google Scholar 

  • Keating, M. Y., Sauer, B. B., & Flexman, E. A. (1997). Journal of Macromolecular Science-Physics, 36, 717.

    Article  Google Scholar 

  • Klein, C. A., & Cardinale, G. F. (1993). Diamond and Related Materials, 2, 918.

    Article  ADS  Google Scholar 

  • Klüppel, M. (2014). Wear and abrasion of tires. In S. Kobayashi & K. Müllen (Eds.), Encyclopedia of polymeric nanomaterials. Berlin: Springer.

    Google Scholar 

  • Knauss, W. G. (1989). International series on the strength and fracture of materials and structures (Vol. 4, p. 2683). New York: Pergamon Press.

    Google Scholar 

  • Knauss, W. G. (2015). International Journal of Fracture, 196, 99.

    Article  Google Scholar 

  • Kohlrausch, R. (1847). Annalen der Physik und Chemie, 12, 393.

    Google Scholar 

  • Krieg, M., Fläschner, G., Alsteens, D., Gaub, B. M., Roos, W. H., Wuite, G. J. L., Gaub, H. E., Gerber, C., Dufrêne, Y. F., & Müller, D. J. (2019). Nature Reviews Physics, 1, 2019.

    Google Scholar 

  • Lach, R., & Grellman, W. (2017). Modern aspects of fracture mechanics in industrial application of polymers. In W. Grellmann & B. Langer (Eds.), Deformation and fracture behaviour of polymer materials. Berlin: Springer.

    Google Scholar 

  • Lakes, R. (1987). Science, 235, 1038.

    Article  ADS  Google Scholar 

  • Lakes, R. S., & Witt, R. (2002). International Journal of Mechanical Engineering Education, 30, 50.

    Article  Google Scholar 

  • Leis, B. N. (1989). 11th A. G. A. Plastic Fuel Gas Pipe Symposium, San Francisco, U.S.A.

    Google Scholar 

  • Liu, C.-Y., He, J., Keunings, R., & Bailly, C. (2006). Macromolecules, 39, 8867.

    Article  ADS  Google Scholar 

  • Lu, H., Zhang, X., & Knauss, W. G. (1997). Polymer Science and Engineering, 37, 1053.

    Article  Google Scholar 

  • Lustiger, A. (1986). In W. Brostow & R. D. Corneliussen (Eds.), Failure of plastics (p. 305). Munich: Carl Hanser.

    Google Scholar 

  • McCrum, N. G., Buckley, C. P., & Bucknall, C. B. (1997). Principles of polymer engineering (2nd ed.). Oxford: Oxford Science Publishers.

    Google Scholar 

  • Mercier, J. P., & Groeninckx, G. (1969). Rheologica Acta, 8, 504.

    Article  Google Scholar 

  • Michler, G. H. (2001). Crazing in amorphous polymers – Formation of fibrillated crazes near the glass transition temperature. In W. Grellman & S. Seidler (Eds.), Deformation and fracture behaviour of polymers (p. 193). Berlin: Springer.

    Chapter  Google Scholar 

  • Mohammady, S. Z., Mansour, A. A., Knoll, K., & Stoll, B. (2002). Polymer, 43, 2467.

    Article  Google Scholar 

  • Molan, G. E., & Keskkula, H. (1968). Applied Polymer Symposia, 7, 35.

    Google Scholar 

  • Moyassari, A., Gkourmpis, T., Hedenqvist, M. S., & Gedde, U. W. (2018). Polymer, 161, 139.

    Article  Google Scholar 

  • Moyassari, A., Gkourmpis, T., Hedenqvist, M. S., & Gedde, U. W. (2019). Macromolecules, 52, 807.

    Article  ADS  Google Scholar 

  • Muliana, A. H., & Haj-Ali, R. M. (2004). Mechanics of Materials, 36, 1087.

    Article  Google Scholar 

  • Mullikan, A. D., & Boyce, M. C. (2006). International Journal of Solids and Structures, 43, 1331.

    Article  Google Scholar 

  • Mura, A., Ricci, A., & Canavese, G. (2018). Materials, 11, 1818.

    Article  ADS  Google Scholar 

  • Naebe, M., Abolhasani, M. M., Khayyam, H., Amini, A., & Fox, B. (2016). Polymer Reviews, 56, 31.

    Article  Google Scholar 

  • Nielsen, L. E., & Landel, R. F. (1994). Mechanical properties of polymers and composites. New York: Marcel Dekker.

    Google Scholar 

  • Nilsson, F., Lan, X., Gkourmpis, T., Hedenqvist, M. S., & Gedde, U. W. (2012). Polymer, 53, 3594.

    Article  Google Scholar 

  • Olabarrieta, I., Gällstedt, M., Sarasua, J.-R., Johansson, E., & Hedenqvist, M. S. (2006). Biomacromolecules, 7, 1657.

    Article  Google Scholar 

  • Olsson, A.-M., & Salmén, L. (2014). Wood Science and Technology, 48, 569.

    Article  Google Scholar 

  • Özeren, H. D., Nilsson, F., Olsson, R. T., & Hedenqvist, M. S. (2020a). Materials Design, 187, 108387.

    Article  Google Scholar 

  • Özeren, H. D., Guivier, M., Olsson, R. T., Nilsson, F., & Hedenqvist, M. S. (2020b). ACS applied polymer materials., in press.

    Google Scholar 

  • Page, D. H. (1969). Tappi Journal, 52, 674.

    Google Scholar 

  • Park, S.-H., Park, C.-M., Kim, J.-H., & Kim, T. (2015). Advances in civil, environmental, and materials research (ACEM 15), Incheon, Korea, August 25–29.

    Google Scholar 

  • Pennings, J. P., Pras, H. E., & Pennings, A. J. (1994). Colloid and Polymer Science, 272, 664.

    Article  Google Scholar 

  • Petermann, J., & Ebener, H. (1999). Journal of Macromolecular Science-Physics Edition, B38, 837.

    Article  ADS  Google Scholar 

  • Pinto, M. B. (2007). European Journal of Physics, 28, 171.

    Article  ADS  Google Scholar 

  • Plackett, D., Anturi, H., Hedenqvist, M., Ankerfors, M., Lindström, T., & Siró, I. (2010). Journal of Applied Polymer Science, 117, 3601.

    Google Scholar 

  • Plati, E., & Williams, J. G. (1975). Polymer Engineering and Science, 15, 470.

    Article  Google Scholar 

  • Plazek, D. J. (1960). Journal of Colloid Science, 15, 50.

    Article  Google Scholar 

  • Porter, D., & Gould, P. J. (2009). International Journal of Solids and Structures, 46, 1981.

    Article  Google Scholar 

  • Qausar, M. (1989). Pure and Applied Geophysics, 131, 703.

    Article  ADS  Google Scholar 

  • Qiu, W., & Kang, Y.-L. (2014). Chinese Science Bulletin, 59, 2811.

    Article  ADS  Google Scholar 

  • Ramsteiner, F. (1983). Kunststoffe, 73, 148.

    Google Scholar 

  • Ramsteiner, F., Schuster, W., & Forster, S. (2001). Concepts of fracture mechanics for polymers. In W. Grellman & S. Seidler (Eds.), Deformation and fracture behaviour of polymers (p. 3). Berlin: Springer.

    Google Scholar 

  • Redhead, A., Frank, A., & Pinter, G. (2013). Engineering Fracture Mechanics, 101, 2.

    Article  Google Scholar 

  • Roa, J. J., Oncins, G., Diaz, J., Sanz, F., & Segarra, M. (2011). Recent Patents on Nanotechnology, 5, 27.

    Article  Google Scholar 

  • Robeson, L. M. (2013). Polymer Engineering and Science, 53, 453.

    Article  Google Scholar 

  • Rodgers, B., & Waddell, W. (2013). Chapter 9: The science of rubber compounding. In J. E. Mark, B. Erman, & C. M. Roland (Eds.), The science and technology of Rubber (4th ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Rösler, J., Bäker, M., & Harders, H. (2007). Mechanical behaviour of polymers. In Mechanical behaviour of engineering materials. Berlin: Springer.

    Google Scholar 

  • Saada, A. S. (1993). Elasticity theory and applications (3rd ed.). Malabar: Krieger Publishing Company.

    MATH  Google Scholar 

  • Sadler, D. M., & Barhan, P. J. (1990). Polymer, 31, 46.

    Google Scholar 

  • Salazar, A., Rodríguez, J., & Martínez, A. B. (2013). Engineering Fracture Mechanics, 101, 10.

    Article  Google Scholar 

  • Schapery, R. A. (1969). Polymer Engineering and Science, 9, 295.

    Article  Google Scholar 

  • Schapery, R. A. (1997). Mechanics of Time-Dependent Materials, 1, 209.

    Article  ADS  Google Scholar 

  • Schmieder, K., & Wolf, K. (1952). Kolloid Zeitschrift, 127, 65.

    Article  Google Scholar 

  • Schrauwen, B. A. G., Janssen, R. P. M., Govaert, L. E., & Meijer, H. E. H. (2004). Macromolecules, 37, 6069.

    Article  ADS  Google Scholar 

  • Schwarzl, F. R. (1969). Rheologica Acta, 8, 6.

    Article  Google Scholar 

  • Schwarzl, F. R. (1970). Rheologica Acta, 9, 382.

    Article  Google Scholar 

  • Schwarzl, F. R. (1971). Rheologica Acta, 10, 165.

    Article  Google Scholar 

  • Schwarzl, F. R. (1975). Rheologica Acta, 14, 581.

    Article  Google Scholar 

  • Schwarzl, F. R., & Staverman, A. J. (1952). Journal of Applied Physics, 23, 838.

    Article  ADS  Google Scholar 

  • Schwarzl, F. R., & Struik, L. C. E. (1968). Advances in Molecular Relaxation Processes, 1, 201.

    Article  Google Scholar 

  • Sharma, P., Chauhan, U., Kumar, S., & Sharma, K. (2018). International Journal of Applied Engineering Research, 13, 363.

    Google Scholar 

  • Shur, Y. J., & Rånby, B. (1975). Journal of Applied Polymer Science, 19, 1337.

    Article  Google Scholar 

  • Siviour, C. R., & Jordan, J. L. (2016). Journal of Dynamic Behaviour of Materials, 2, 15.

    Article  Google Scholar 

  • Spathis, G., & Kontou, E. (2012). Composites Science and Technology, 72, 959–964.

    Article  Google Scholar 

  • Stachurski, Z. H. (1997). Progress in Polymer Science, 22, 407.

    Article  Google Scholar 

  • Stribeck, N. (1993). Colloid and Polymer Science, 271, 1007.

    Article  Google Scholar 

  • Takahashi, M., Chen, M. C., Taylor, R. B., & Tobolsky, A. V. (1964). Journal of Applied Polymer Science, 8, 1549.

    Article  Google Scholar 

  • Takayanagi, M. (1983). Pure and Applied Chemistry, 55, 819.

    Article  Google Scholar 

  • Takayanagi, M., & Goto, K. (1985). Polymer Bulletin, 13, 35.

    Article  Google Scholar 

  • Takemori, M. T. (1984). Annual Reviews on Materials Science, 14, 171.

    Article  ADS  Google Scholar 

  • Talamini, B., Mao, Y., & Anand, L. (2017). Journal of the Mechanics and Physics of Solids, 111, 434.

    Article  ADS  Google Scholar 

  • Tränkner, T. (1990). Studsvik report, Studsvik, Sweden.

    Google Scholar 

  • Tränkner, T., Hedenqvist, M. S., & Gedde, U. W. (1994). Polymer Engineering and Science, 34, 1581.

    Article  Google Scholar 

  • Tränkner, T., Hedenqvist, M., & Gedde, U. W. (1997). Polymer Engineering and Science, 37, 346.

    Article  Google Scholar 

  • Van der Akker, J. A., Lathrop, A. L., Voelker, M. H., & Dearth, L. R. (1958). Tappi Journal, 41, 416.

    Google Scholar 

  • Van Holde, K. (1957). Journal of Polymer Science, 24, 417.

    Article  ADS  Google Scholar 

  • Van Krevelen, D. W., & Te Nijeuhuis (2009). Properties of polymers (4th ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Viebke, J., Elble, E., Ifwarson, M., & Gedde, U. W. (1994). Polymer Engineering and Science, 34, 1354.

    Article  Google Scholar 

  • Vincent, P. I. (1961). Plastics, 26, 141.

    Google Scholar 

  • Vincent, P. I. (1971). Impact test and service performance of thermoplastics. London: Plastics Institute.

    Google Scholar 

  • Visser, H. A., Caimmi, F., & Pavan, A. (2013). Engineering Fracture Mechanics, 101, 67.

    Article  Google Scholar 

  • Vogt, B. D. (2018). Journal of Polymer Science, Part B: Polymer Physics, 56, 9.

    Article  ADS  Google Scholar 

  • Wagner, M. H., & Narimissa, E. (2018). Journal of Rheology, 62, 221.

    Article  ADS  Google Scholar 

  • Wang, J., Xu, Y., Zhang, W., & Ren, X. (2019). Polymers, 11, 654.

    Article  Google Scholar 

  • Ward, I. M. (1985). Mechanical properties of solid polymers (2nd ed.). New York: Wiley.

    Google Scholar 

  • Ward, A. L., Lu, X., Huang, Y.-L., & Brown, N. (1991). Polymer, 32, 2172.

    Article  Google Scholar 

  • Weng, P., Tang, Z., & Guo, B. (2020). Polymer, 190, 122244.

    Article  Google Scholar 

  • Wetton, R. E., Foster, G., & Corish, P. J. (1991). Polymer Testing, 10, 175.

    Article  Google Scholar 

  • Williams, J. G. (1978). Applications of linear fracture mechanics in failure. in Polymers, Advances in polymer science, 27, ed. Cantow, H.-J., p. 67, Berlin: Springer.

    Google Scholar 

  • Williams, G., & Watts, D. C. (1970). Transactions of the Faraday Society, 66, 80.

    Article  Google Scholar 

  • Winkler, A., & Kloosterman, G. (2015). Frattura ed Integritá Strutturale, 33, 262.

    Article  Google Scholar 

  • Wolf, K. (1951). Kunststoffe, 41, 89.

    Google Scholar 

  • Wu, S. (1992). Polymer International, 247, 229.

    Article  Google Scholar 

  • Xu, H., Tang, Y., Liu, Z., Cai, Y., & Wang, Y. (2017a). IOP Conference Series: Materials Science and Engineering, 231, 012123.

    Article  Google Scholar 

  • Xu, T., Jia, Z., Wu, L., Chen, Y., Luo, Y., Jia, D., & Peng, Z. (2017b). Applied Surface Science, 423, 43.

    Article  ADS  Google Scholar 

  • Young, R. (1974). The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 30, 85.

    Article  Google Scholar 

  • Young, R. (1988). Journal of Materials Forum, 11, 210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf W. Gedde .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gedde, U.W., Hedenqvist, M.S., Hakkarainen, M., Nilsson, F., Das, O. (2021). Mechanical Properties. In: Applied Polymer Science. Springer, Cham. https://doi.org/10.1007/978-3-030-68472-3_6

Download citation

Publish with us

Policies and ethics