Skip to main content

Liquid Phase Deposition of Nanostructured Materials for Supercapacitor Applications

  • Chapter
  • First Online:
Chemically Deposited Nanocrystalline Metal Oxide Thin Films

Abstract

To fulfill the energy demand of the world, there is a need of sustainable energy sources and storage devices. Supercapacitor is one of the energy storage devices. Among the challenges of developing a good supercapacitor, the most important one is to prepare an electrode. Such electrodes are prepared using variety of physical and chemical methods. Among these, chemical methods are easier and cost-effective. Liquid phase deposition (LPD) is one of the simplest methods among the chemical methods. In this chapter, the main focus is on the electrode materials deposited by LPD method. The electrode materials deposited by LPD for supercapacitor applications are iron oxide (α-Fe2O3), copper oxide (CuO), and layered double hydroxides (LDHs). The chapter also explores the significant changes observed in the electrochemical performance due to deposition on different substrates like flat stainless steel (SS), mesh SS, graphene, nickel foam, e-MXene, and carbon nanotube paper. Such electrodes are evaluated for supercapacitive performance, and results are compared with the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAO:

Anodic aluminum oxide

ac:

Alternating current

ASS:

AISI304 stainless steel

CBD:

Chemical bath deposition

CMC:

Carboxymethyl cellulose

CNP:

Carbon nanotube paper

CV:

Cyclic voltammetry

DMM:

Digital multimeter

EC:

Electrochemical capacitor

EDL:

Electric double layer

EDLC:

Electric double layer capacitor

EDS:

Energy dispersive spectroscopy

EDTA:

Ethylenediaminetetraacetic acid

EIS:

Electrochemical impedance spectroscopy

ESR:

Equivalent series resistance

FGMs:

Functionally graded materials

FSS–SC:

Flexible solid-state supercapacitor

FTO:

Fluorine-doped tin oxide

GCD:

Galvanostatic charge-discharge

ITO:

Indium tin oxide

LDH:

Layered double hydroxide

LPD:

Liquid phase deposition

PECVD:

Plasma-enhanced chemical vapor deposition

PEG:

Polyethylene glycol

PTFE:

Polytetrafluoroethylene

PVA:

Polyvinyl alcohol

rpm:

Rotations per minute

SC:

Supercapacitor

SE:

Specific energy

SEM:

Scanning electron microscopy

SILAR:

Successive ionic layer adsorption and reaction

SiOF:

Fluorinated silicon oxide

SP:

Specific power

SS:

Stainless steel

UV:

Ultraviolet

References

  1. Afif A et al (2019) Advanced materials and technologies for hybrid supercapacitors for energy storage—a review. J Energy Storage 25:100852. https://doi.org/10.1016/j.est.2019.100852

    Article  Google Scholar 

  2. Muralee Gopi CVV, Vinodh R, Sambasivam S, Obaidat IM, Kim H-J (2020) Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: from design and development to applications. J Energy Storage 27:101035. https://doi.org/10.1016/j.est.2019.101035

    Article  Google Scholar 

  3. Basu A et al (2016) CO2 laser direct written MOF-based metal-decorated and heteroatom-doped porous graphene for flexible all-solid-state microsupercapacitor with extremely high cycling stability. ACS Appl Mater Interfaces 8:31841–31848. https://doi.org/10.1021/acsami.6b10193

  4. Dubal DP, Chodankar NR, Kim DH, Gomez-Romero P (2018) Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 47:2065–2129. https://doi.org/10.1039/c7cs00505a

    Article  CAS  Google Scholar 

  5. Tyutyundzhiev N, Lovchinov K, Petrov M, Nichev H (2019) Graphene/polyaniline flexible supercapacitors using non-metalic electrodes. J Phys Conf Ser 1186:012034. https://doi.org/10.1088/1742-6596/1186/1/012034

    Article  CAS  Google Scholar 

  6. Shao Y et al (2015) Graphene-based materials for flexible supercapacitors. Chem Soc Rev 44:3639–3665. https://doi.org/10.1039/c4cs00316k

    Article  CAS  Google Scholar 

  7. Rajendran S, Naushad M, Balakumar S (2019) Nanostructured materials for energy related applications. Springer Nature, London

    Book  Google Scholar 

  8. Lokhande CD, Dubal DP, Joo OS (2011) Metal oxide thin film based supercapacitors. Curr Appl Phys 11:255–270. https://doi.org/10.1016/j.cap.2010.12.001

    Article  Google Scholar 

  9. Lu T, Dong S, Zhang C, Zhang L, Cui G (2016) Fabrication of transition metal selenides and their applications in energy storage. Coord Chem Rev 330:75–99. https://doi.org/10.1016/j.ccr.2016.11.005

    Article  CAS  Google Scholar 

  10. Theerthagiri J et al (2018) Recent advances in metal chalcogenides (MX; X = S, Se) nanostructures for electrochemical supercapacitor applications: a brief review. Nanomaterials (Basel) 8(4):256. https://doi.org/10.3390/nano8040256

    Article  CAS  Google Scholar 

  11. Balogun M-S et al (2015) Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J Mater Chem A 3:1364–1387. https://doi.org/10.1039/c4ta05565a

    Article  CAS  Google Scholar 

  12. Zhu C et al (2015) All metal nitrides solid-state asymmetric supercapacitors. Adv Mater 27:4566–4571. https://doi.org/10.1002/adma.201501838

    Article  CAS  Google Scholar 

  13. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5:12653. https://doi.org/10.1039/c7ta00863e

    Article  CAS  Google Scholar 

  14. Chee WK et al (2016) flexible graphene-based supercapacitors: a review. J Phys Chem C 120:4153–4172. https://doi.org/10.1021/acs.jpcc.5b10187

    Article  CAS  Google Scholar 

  15. Chen K, Song S, Liu F, Xue D (2015) Structural design of graphene for use in electrochemical energy storage devices. Chem Soc Rev 44:6230–6257. https://doi.org/10.1039/c5cs00147a

    Article  CAS  Google Scholar 

  16. Fisher RA, Watt MR, Ready WJ (2013) Functionalized carbon nanotube supercapacitor electrodes: a review on pseudocapacitive materials. ECS J Solid State Sci Technol 2:M3170–M3177. https://doi.org/10.1149/2.017310jss

    Article  CAS  Google Scholar 

  17. Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes—a review. J Materiomics 2:37–54. https://doi.org/10.1016/j.jmat.2016.01.001

    Article  Google Scholar 

  18. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  19. Pawar SM, Pawar BS, Kim JH, Joo O-S, Lokhande CD (2011) Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films. Curr Appl Phys 11:117–161. https://doi.org/10.1016/j.cap.2010.07.007

    Article  Google Scholar 

  20. Wang Q, Yan J, Fan Z (2016) Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci 9:729. https://doi.org/10.1039/c5ee03109e

    Article  CAS  Google Scholar 

  21. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531. https://doi.org/10.1039/b813846j

    Article  CAS  Google Scholar 

  22. Eftekhari A, Li L, Yang Y (2017) Polyaniline supercapacitors. J Power Sources 347:86–107. https://doi.org/10.1016/j.jpowsour.2017.02.054

    Article  CAS  Google Scholar 

  23. Gao Y (2017) Graphene and polymer composites for supercapacitor applications: a review. Nanoscale Res Lett 12:387. https://doi.org/10.1186/s11671-017-2150-5

    Article  Google Scholar 

  24. Ho MY et al (2014) A review of metal oxide composite electrode materials for electrochemical capacitors. Nano 9:1430002. https://doi.org/10.1142/s1793292014300023

    Article  CAS  Google Scholar 

  25. Poonam, Sharma K, Arora A, Tripathi SK (2019) Review of supercapacitors: materials and devices. J Energy Storage 21:801–825. https://doi.org/10.1016/j.est.2019.01.010

    Article  Google Scholar 

  26. Deshmukh PR, Bulakhe RN, Pusawale SN, Sartale SD, Lokhande CD (2014) Inexpensive synthesis route of porous polyaniline–ruthenium oxide composite for supercapacitor application. Chem Eng J 257:82–89. https://doi.org/10.1016/j.cej.2014.06.038

  27. Deshmukh PR, Bulakhe RN, Pusawale SN, Sartale SD, Lokhande CD (2015) Polyaniline–RuO2 composite for high performance supercapacitors: chemical synthesis and properties. Rsc Adv 5:28687–28695. https://doi.org/10.1039/C4RA16969G

  28. Jiang H, Zhao T, Li CZ, Ma J (2011) Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. J Mater Chem 21:3818–3823. https://doi.org/10.1039/c0jm03830j

    Article  CAS  Google Scholar 

  29. Xiong S, Yuan C, Zhang X, Qian Y (2011) Mesoporous NiO with various hierarchical nanostructures by quasi-nanotubes/nanowires/nanorods self-assembly: controllable preparation and application in supercapacitors. CrstEngComm 13:626–632. https://doi.org/10.1039/c002610g

    Article  CAS  Google Scholar 

  30. Yuan CZ, Zhang XG, Su LH, Gao B, Shen LF (2009) Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J Mater Chem 19:5772–5777. https://doi.org/10.1039/b902221j

    Article  CAS  Google Scholar 

  31. Pang H, Gao F, Chen Q, Liu R, Lu Q (2012) Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis. Dalton Trans 41:5862–5868. https://doi.org/10.1039/c2dt12494g

  32. Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett 12:2559–2567. https://doi.org/10.1021/nl300779a

    Article  CAS  Google Scholar 

  33. Xia XH et al (2012) Freestanding Co3O4 nanowire array for high performance supercapacitors. Rsc Adv 2:1835–1841. https://doi.org/10.1039/c1ra00771h

  34. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417. https://doi.org/10.1021/jp7108785

  35. Ragupathy P et al (2009) Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C 113:6303–6309. https://doi.org/10.1021/jp811407q

    Article  CAS  Google Scholar 

  36. Chodankar NR, Dubal DP, Gund GS, Lokhande CD (2015) Flexible all-solid-state MnO2 thin films based symmetric supercapacitors. Electrochim Acta 165:338–347. https://doi.org/10.1016/j.electacta.2015.02.246

  37. Chodankar NR, Dubal DP, Gund GS, Lokhande CD (2015) Bendable all-solid-state asymmetric supercapacitors based on MnO2 and Fe2O3 thin films. Energy Technol 3:625–631. https://doi.org/10.1002/ente.201402213

  38. Chodankar NR, Gund GS, Dubal DP, Lokhande CD (2014) Alcohol mediated growth of α-MnO2 thin films from KMnO4 precursor for high performance supercapacitors. RSC Adv 4:61503–61513. https://doi.org/10.1039/c4ra09268f

  39. Dubal DP, Holze R (2013) Self-assembly of stacked layers of Mn3O4 nanosheets using a scalable chemical strategy for enhanced, flexible, electrochemical energy storage. J Power Sources 238:274–282. https://doi.org/10.1016/j.jpowsour.2013.01.198

  40. Dubal DP, Holze R (2013) All-solid-state flexible thin film supercapacitor based on Mn3O4 stacked nanosheets with gel electrolyte. Energy 51:407–412. https://doi.org/10.1016/j.energy.2012.11.021

  41. Gund GS et al (2015) Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel. Sci Rep 5:12454. https://doi.org/10.1038/srep12454

  42. Desai MA, Kulkarni A, Gund G, Sartale SD (2021) SILAR Grown K and Na Ions Preinserted MnO Nanostructures for Supercapacitor Applications: A Comparative Study. Energy & Fuels 35:4577–4586. https://doi.org/10.1021/acs.energyfuels.0c04252

  43. Suhasini (2013) Effect of deposition method and the surfactant on high capacitance of electrochemically deposited MnO2 on stainless steel substrate. J Electroanal Chem 690:13–18. https://doi.org/10.1016/j.jelechem.2012.11.040

  44. Chen J, Huang KL, Liu SQ (2009) Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor. Electrochim Acta 55:1–5. https://doi.org/10.1016/j.electacta.2009.04.017

  45. Pang SC, Khoh WH, Chin SF (2010) Nanoparticulate magnetite thin films as electrode materials for the fabrication of electrochemical capacitors. J Mater Sci 45:5598–5604. https://doi.org/10.1007/s10853-010-4622-1

    Article  CAS  Google Scholar 

  46. Sun HY et al (2012) Solvothermal synthesis of tunable electroactive magnetite nanorods by controlling the side reaction. J Phys Chem C 116:5476–5481. https://doi.org/10.1021/jp211986a

    Article  CAS  Google Scholar 

  47. Wang SY, Wu NL (2003) Operating characteristics of aqueous magnetite electrochemical capacitors. J Appl Electrochem 33:345–348. https://doi.org/10.1023/A:1024193028297

    Article  CAS  Google Scholar 

  48. Wang S-Y, Ho K-C, Kuo S-L, Wu N-L (2006) Investigation on capacitance mechanisms of Fe3O4 electrochemical capacitors. J Electrochem Soc 153:A75. https://doi.org/10.1149/1.2131820

    Article  CAS  Google Scholar 

  49. Wu NL, Wang SY, Han CY, Wu DS, Shiue LR (2003) Electrochemical capacitor of magnetite in aqueous electrolytes. J Power Sources 113:173–178. https://doi.org/10.1016/S0378-7753(02)00482-2

    Article  CAS  Google Scholar 

  50. Abdi A, Trari M (2013) Investigation on photoelectrochemical and pseudo-capacitance properties of the non-stoichiometric hematite α-Fe2O3 elaborated by sol–gel. Electrochim Acta 111:869–875. https://doi.org/10.1016/j.electacta.2013.08.076

  51. Fu C, Mahadevegowda A, Grant PS (2016) Production of hollow and porous Fe2O3 from industrial mill scale and its potential for large-scale electrochemical energy storage applications. J Mater Chem A 4:2597–2604. https://doi.org/10.1039/c5ta09141a

  52. Binitha G et al (2013) Electrospun α-Fe2O3 nanostructures for supercapacitor applications. J Mater Chem A 1:11698. https://doi.org/10.1039/c3ta12352a

  53. Huang JC et al (2014) Fe2O3 sheets grown on nickel foam as electrode material for electrochemical. capacitors. J Electroanal Chem 713:98–102. https://doi.org/10.1016/j.jelechem.2013.12.009

  54. Kulal PM, Dubal DP, Lokhande CD, Fulari VJ (2011) Chemical synthesis of Fe2O3 thin films for supercapacitor application. J Alloys Compd 509:2567–2571. https://doi.org/10.1016/j.jallcom.2010.11.091

  55. Liu J, Lee E, Kim YT, Kwon YU (2014) Ultra-high capacitance hematite thin films with controlled nanoscopic morphologies. Nanoscale 6:10643–10649. https://doi.org/10.1039/c4nr03141e

    Article  CAS  Google Scholar 

  56. Lokhande BJ, Ambare RC, Bharadwaj SR (2014) Thermal optimization and supercapacitive application of electrodeposited Fe2O3 thin films. Measurement 47:427–432. https://doi.org/10.1016/j.measurement.2013.09.005

  57. Shivakumara S, Penki TR, Munichandraiah N (2013) Synthesis and characterization of porous flowerlike-Fe2O3 nanostructures for supercapacitor application. ECS Electrochem Lett 2:A60–A62. https://doi.org/10.1149/2.002307eel

  58. Wu MS, Lee RH (2009) Electrochemical growth of iron oxide thin films with nanorods and nanosheets for capacitors. J Electrochem Soc 156:A737–A743. https://doi.org/10.1149/1.3160547

    Article  CAS  Google Scholar 

  59. Xie KY et al (2011) Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochem Commun 13:657–660. https://doi.org/10.1016/j.elecom.2011.03.040

    Article  CAS  Google Scholar 

  60. Yousefi T, Golikand AN, Mashhadizadeh MH (2013) Synthesis of iron oxide nanoparticles at low bath temperature: characterization and energy storage studies. Mater Sci Semicond Process 16:1837–1841. https://doi.org/10.1016/j.mssp.2013.06.018

    Article  CAS  Google Scholar 

  61. Zhang M et al (2015) Ethylenediamine-assisted crystallization of Fe2O3 microspindles with controllable size and their pseudocapacitance performance. CrstEngComm 17:1521–1525. https://doi.org/10.1039/c4ce02417f

  62. Nagarajan N, Zhitomirsky I (2006) Cathodic electrosynthesis of iron oxide films for electrochemical supercapacitors. J Appl Electrochem 36:1399–1405. https://doi.org/10.1007/s10800-006-9232-x

    Article  CAS  Google Scholar 

  63. Wang D, Wang Q, Wang T (2011) Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes. Nanotechnology 22:135604. https://doi.org/10.1088/0957-4484/22/13/135604

    Article  CAS  Google Scholar 

  64. Wu MS et al (2009) Nanostructured iron oxide films prepared by electrochemical method for electrochemical capacitors. Electrochem Solid State Lett 12:A1–A4. https://doi.org/10.1149/1.2998547

    Article  CAS  Google Scholar 

  65. Dubal DP, Dhawale DS, Salunkhe RR, Jamdade VS, Lokhande CD (2010) Fabrication of copper oxide multilayer nanosheets for supercapacitor application. J Alloys Compd 492:26–30. https://doi.org/10.1016/j.jallcom.2009.11.149

    Article  CAS  Google Scholar 

  66. Dubal DP et al (2013) Surfactant-assisted morphological tuning of hierarchical CuO thin films for electrochemical supercapacitors. Dalton Trans 42:6459–6467. https://doi.org/10.1039/c3dt50275a

    Article  CAS  Google Scholar 

  67. Dubal DP, Gund GS, Holze R, Lokhande CD (2013) Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors. J Power Sources 242:687–698. https://doi.org/10.1016/j.jpowsour.2013.05.013

    Article  CAS  Google Scholar 

  68. Dubal DP, Gund GS, Holze R, Lokhande CD (2014) Enhancement in supercapacitive properties of CuO thin films due to the surfactant mediated morphological modulation. J Electroanal Chem 712:40–46. https://doi.org/10.1016/j.jelechem.2013.10.025

    Article  CAS  Google Scholar 

  69. Dubal DP, Gund GS, Lokhande CD, Holze R (2013) CuO cauliflowers for supercapacitor application: novel potentiodynamic deposition. Mater Res Bull 48:923–928. https://doi.org/10.1016/j.materresbull.2012.11.081

    Article  CAS  Google Scholar 

  70. Hsu Y-K, Chen Y-C, Lin Y-G (2012) Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes. J Electroanal Chem 673:43–47. https://doi.org/10.1016/j.jelechem.2012.03.019

  71. Li Y et al (2012) Nanostructured CuO directly grown on copper foam and their supercapacitance performance. Electrochim Acta 85:393–398. https://doi.org/10.1016/j.electacta.2012.07.127

    Article  CAS  Google Scholar 

  72. Lu Y et al (2015) Facile synthesis of graphene-like copper oxide nanofilms with enhanced electrochemical and photocatalytic properties in energy and environmental applications. ACS Appl Mater Interfaces 7:9682–9690. https://doi.org/10.1021/acsami.5b01451

    Article  CAS  Google Scholar 

  73. Momeni MM, Nazari Z, Kazempour A, Hakimiyan M, Mirhoseini SM (2014) Preparation of CuO nanostructures coating on copper as supercapacitor materials. Surf Eng 30:775–778. https://doi.org/10.1179/1743294414y.0000000318

    Article  CAS  Google Scholar 

  74. Patake VD, Joshi SS, Lokhande CD, Joo O-S (2009) Electrodeposited porous and amorphous copper oxide film for application in supercapacitor. Mater Chem Phys 114:6–9. https://doi.org/10.1016/j.matchemphys.2008.09.031

    Article  CAS  Google Scholar 

  75. Patil UM et al (2017) Temperature influenced chemical growth of hydrous copper oxide/hydroxide thin film electrodes for high performance supercapacitors. J Alloys Compd 701:1009–1018. https://doi.org/10.1016/j.jallcom.2017.01.025

    Article  CAS  Google Scholar 

  76. Pawar SM et al (2016) Multi-functional reactively-sputtered copper oxide electrodes for supercapacitor and electro-catalyst in direct methanol fuel cell applications. Sci Rep 6:21310. https://doi.org/10.1038/srep21310

    Article  CAS  Google Scholar 

  77. Purusottam Reddy B, Sivajee Ganesh K, Hussain OM (2016) Growth, microstructure and supercapacitive performance of copper oxide thin films prepared by RF magnetron sputtering. Appl Phys A 122:128. https://doi.org/10.1007/s00339-015-9588-z

    Article  CAS  Google Scholar 

  78. Shinde AV et al (2016) Highly energetic flexible all-solid-state asymmetric supercapacitor with Fe2O3 and CuO thin films. RSC Adv 6:58839–58843. https://doi.org/10.1039/c6ra11896h

  79. Shinde SK, Dubal DP, Ghodake GS, Kim DY, Fulari VJ (2014) Nanoflower-like CuO/Cu(OH)2 hybrid thin films: synthesis and electrochemical supercapacitive properties. J Electroanal Chem 732:80–85. https://doi.org/10.1016/j.jelechem.2014.09.004

  80. Shinde SK et al (2018) Morphological enhancement to CuO nanostructures by electron beam irradiation for biocompatibility and electrochemical performance. Ultrason Sonochem 40:314–322. https://doi.org/10.1016/j.ultsonch.2017.07.014

    Article  CAS  Google Scholar 

  81. Vidhyadharan B et al (2014) Superior supercapacitive performance in electrospun copper oxide nanowire electrodes. J Mater Chem A 2:6578–6588. https://doi.org/10.1039/c3ta15304e

    Article  CAS  Google Scholar 

  82. Wang G, Huang J, Chen S, Gao Y, Cao D (2011) Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J Power Sources 196:5756–5760. https://doi.org/10.1016/j.jpowsour.2011.02.049

    Article  CAS  Google Scholar 

  83. Xu P et al (2015) One-step synthesis of copper compounds on copper foil and their supercapacitive performance. RSC Adv 5:36656–36664. https://doi.org/10.1039/c5ra04889c

    Article  CAS  Google Scholar 

  84. Zhang H, Zhang M (2008) Synthesis of CuO nanocrystalline and their application as electrode materials for capacitors. Mater Chem Phys 108:184–187. https://doi.org/10.1016/j.matchemphys.2007.10.005

    Article  CAS  Google Scholar 

  85. Zhang X et al (2011) High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes. ACS Nano 5:2013–2019. https://doi.org/10.1021/nn1030719

    Article  CAS  Google Scholar 

  86. Zhao B et al (2013) Hierarchical self-assembly of microscale leaf-like CuO on graphene sheets for high-performance electrochemical capacitors. J Mater Chem A 1:367–373. https://doi.org/10.1039/c2ta00084a

    Article  CAS  Google Scholar 

  87. Chen SM, Ramachandran R, Mani V, Saraswathi R (2014) Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: a review. Int J Electrochem Soc 9:4072–4085

    Google Scholar 

  88. Chen D, Wang Q, Wang R, Shen G (2015) Ternary oxide nanostructured materials for supercapacitors: a review. J Mater Chem A 3:10158–10173. https://doi.org/10.1039/c4ta06923d

    Article  CAS  Google Scholar 

  89. Kate RS, Khalate SA, Deokate RJ (2018) Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: a review. J Alloys Compd 734:89–111. https://doi.org/10.1016/j.jallcom.2017.10.262

    Article  CAS  Google Scholar 

  90. Zhang Y, Li L, Su H, Huang W, Dong X (2015) Binary metal oxide: advanced energy storage materials in supercapacitors. J Mater Chem A 3:43–59. https://doi.org/10.1039/c4ta04996a

    Article  CAS  Google Scholar 

  91. Niesen T (2002) Review: deposition of ceramic thin films at low temperatures from aqueous solutions. Solid State Ion 151:61–68. https://doi.org/10.1016/s0167-2738(02)00604-5

    Article  CAS  Google Scholar 

  92. Parikh H, De Guire MR (2009) Recent progress in the synthesis of oxide films from liquid solutions. J Cerma Soc Jpn 117:228–235. https://doi.org/10.2109/jcersj2.117.228

    Article  CAS  Google Scholar 

  93. Desai MA, Sartale SD (2015) Facile soft solution route to engineer hierarchical morphologies of ZnO nanostructures. Cryst Growth Des 15:4813–4820. https://doi.org/10.1021/acs.cgd.5b00561

    Article  CAS  Google Scholar 

  94. Patil, P. S. (1999) Versatility of chemical spray pyrolysis technique. Mater Chem Phys 59: 185–198. https://doi.org/10.1016/S0254-0584(99)00049-8

  95. Kulkarni SK (2015) Nanotechnology: principles and practices. Springer, Berlin

    Book  Google Scholar 

  96. Souza FL, Lopes KP, Nascente PAP, Leite ER (2009) Nanostructured hematite thin films produced by spin-coating deposition solution: application in water splitting. Sol Energy Mat Sol C 93:362–368. https://doi.org/10.1016/j.solmat.2008.11.049

    Article  CAS  Google Scholar 

  97. Sahu N, Parija B, Panigrahi S (2009) Fundamental understanding and modeling of spin coating process: a review. Indian J Phys 83:493–502. https://doi.org/10.1007/s12648-009-0009-z

    Article  CAS  Google Scholar 

  98. Wu M-S, Huang C-Y, Lin K-H (2009) Electrophoretic deposition of nickel oxide electrode for high-rate electrochemical capacitors. J Power Sources 186:557–564. https://doi.org/10.1016/j.jpowsour.2008.10.049

    Article  CAS  Google Scholar 

  99. Behm N, Brokaw D, Overson C, Peloquin D, Poler JC (2012) High-throughput microwave synthesis and characterization of NiO nanoplates for supercapacitor devices. J Mater Sci 48:1711–1716. https://doi.org/10.1007/s10853-012-6929-6

    Article  CAS  Google Scholar 

  100. Deki S et al (1997) Preparation and characterization of iron oxyhydroxide and iron oxide thin films by liquid-phase deposition. J Mater Chem 7:1769–1772. https://doi.org/10.1039/a700628d

    Article  CAS  Google Scholar 

  101. Kawahara HH, Honda H (1984) Japanese patent 59141441 A (Nippon Sheet Glass)

    Google Scholar 

  102. Nagayama H, Honda H, Kawahara H (1988) A new process for silica coating. J Electrochem Soc 135:2013–2016. https://doi.org/10.1149/1.2096198

    Article  CAS  Google Scholar 

  103. Cai Y, Liu M (2012) Corrosion behavior of titania films coated by liquid-phase deposition on AISI304 stainless steel substrates. AIChE J 58:1907–1920. https://doi.org/10.1002/aic.12701

    Article  CAS  Google Scholar 

  104. Fujita R, Sakairi M, Kikuchi T, Nagata S (2011) Corrosion resistant TiO2 film formed on magnesium by liquid phase deposition treatment. Electrochim Acta 56:7180–7188. https://doi.org/10.1016/j.electacta.2011.03.146

  105. Wang X-P, Yu Y, Hu X-F, Gao L (2000) Hydrophilicity of TiO2 films prepared by liquid phase deposition. Thin Solid Films 371:148–152. https://doi.org/10.1016/s0040-6090(00)00995-0

  106. Deki S (2002) Growth of metal oxide thin films from aqueous solution by liquid phase deposition method. Solid State Ion 151:1–9. https://doi.org/10.1016/s0167-2738(02)00597-0

    Article  CAS  Google Scholar 

  107. Ichikawa T, Shiratori S (2011) Fabrication and evaluation of ZnO nanorods by liquid-phase deposition. Inorg Chem 50:999–1004. https://doi.org/10.1021/ic102097q

    Article  CAS  Google Scholar 

  108. Lin J-M, Hsu M-C, Fung K-Z (2006) Deposition of ZrO2 film by liquid phase deposition. J Power Sources 159:49–54. https://doi.org/10.1016/j.jpowsour.2006.04.116

  109. Saito Y, Sekiguchi Y, Mizuhata M, Deki S (2007) Continuous deposition system of SnO2 thin film by the liquid phase deposition (LPD) method. J Cerma Soc Jpn 115:856–860. https://doi.org/10.2109/jcersj2.115.856

  110. Lei PH, Yang CD (2010) Growth of SiO2 on InP substrate by liquid phase deposition. Appl Surf Sci 256:3757–3760. https://doi.org/10.1016/j.apsusc.2010.01.021

  111. Deki S, Aoi Y, Kajinami A (1997) A novel wet process for the preparation of vanadium dioxide thin film. J Mater Sci 32:4269–4273. https://doi.org/10.1023/a:1018603402586

    Article  CAS  Google Scholar 

  112. Basu S, Singh PK, Huang J-J, Wang Y-H (2007) Liquid-phase deposition of Al2O3 thin films on GaN. J Electrochem Soc 154:H1041. https://doi.org/10.1149/1.2793700

    Article  CAS  Google Scholar 

  113. Richardson TJ, Rubin MD (2001) Liquid phase deposition of electrochromic thin films. Electrochim Acta 46:2119–2123. https://doi.org/10.1016/s0013-4686(01)00389-9

    Article  CAS  Google Scholar 

  114. Hishinuma A, Goda T, Kitaoka M, Hayashi S, Kawahara H (1991) Formation of silicon dioxide films in acidic solutions. Appl Surf Sci 48–49:405–408. https://doi.org/10.1016/0169-4332(91)90364-p

    Article  Google Scholar 

  115. Deki S, Iizuka S, Akamatsu K, Mizuhata M, Kajinami A (2005) Fabrication and structural control of Fe/Ti oxide thin films with graded compositional profiles by liquid phase deposition. J Am Ceram Soc 88:731–736. https://doi.org/10.1111/j.1551-2916.2005.00103.x

    Article  CAS  Google Scholar 

  116. Yeh J-L, Lee S-C (1999) Amorphous-silicon thin-film transistor with liquid phase deposition of silicon dioxide gate insulator. IEEE Electron Device Lett 20:138–139

    Article  CAS  Google Scholar 

  117. Yeh K-L, Jeng M-J, Hwu J-G (1999) Fluorinated thin gate oxides prepared by room temperature deposition followed by furnace oxidation. Solid State Electron 43:671–676. https://doi.org/10.1016/s0038-1101(98)00284-6

    Article  CAS  Google Scholar 

  118. Lee KN, Kim KS, Kim N-H, Roh Y (2008) Fabrication of SiO2 nano-dots by block copolymer lithography and liquid phase deposition. Mater Sci Eng B 147:209–212. https://doi.org/10.1016/j.mseb.2007.08.026

  119. Hwang JD, Chen YH, Chen PS (2010) Different growth-temperature effects on the liquid-phase-deposited SiO2 grown on strained SiGe. Electrochem Solid State 13:H45. https://doi.org/10.1149/1.3266882

    Article  CAS  Google Scholar 

  120. Frank MM et al (2006) Hafnium oxide gate dielectrics on sulfur-passivated germanium. Appl Phys Lett 89:112905. https://doi.org/10.1063/1.2338751

    Article  CAS  Google Scholar 

  121. Hwang JD, Lin DS, Lin YL, Chang WT, Yang GH (2010) Electrical properties of metal-oxide-semiconductor capacitors using liquid-phase deposited silicon-dioxide gate dielectric on sulfur-passivated germanium. Thin Solid Films 519:833–835. https://doi.org/10.1016/j.tsf.2010.08.114

    Article  CAS  Google Scholar 

  122. Homma T, Murao Y (1994) Properties of liquid-phase-deposited SiO2 films for interlayer dielectrics in ultralarge-scale integrated circuit multilevel interconnections. Thin Solid Films 249:15–21. https://doi.org/10.1016/0040-6090(94)90079-5

  123. Homma T et al (2000) Optical properties of fluorinated silicon oxide and organic spin-on-glass films for thin-film optical waveguides. J Electrochem Soc 147:1141. https://doi.org/10.1149/1.1393326

    Article  CAS  Google Scholar 

  124. Tabuchi T, Katayama Y, Nukuda T, Ogumi Z (2009) Surface reaction of β-FeOOH film negative electrode for lithium-ion cells. J Power Sources 191:636–639. https://doi.org/10.1016/j.jpowsour.2009.02.021

    Article  CAS  Google Scholar 

  125. Tabuchi T, Katayama Y, Nukuda T, Ogumi Z (2009) β-FeOOH thin film as positive electrode for lithium-ion cells. J Power Sources 191:640–643. https://doi.org/10.1016/j.jpowsour.2009.02.022

    Article  CAS  Google Scholar 

  126. Neri G, Bonavita A, Galvagno S, Pace C, Donato N (2002) Preparation, characterization and CO sensing of Au/iron thin films. J Mater Sci Mater Electron 13:561–565. https://doi.org/10.1023/a:1019629800031

    Article  CAS  Google Scholar 

  127. Pizem H, Sukenik CN, Sampathkumaran U, McIlwain AK, De Guire MR (2002) Effects of substrate surface functionality on solution-deposited titania films. Chem Mater 14:2476–2485. https://doi.org/10.1021/cm010776e

    Article  CAS  Google Scholar 

  128. Masuda Y (2004) Deposition mechanism of anatase TiO2 from an aqueous solution and its site-selective deposition. Solid State Ion 172:283–288. https://doi.org/10.1016/j.ssi.2004.02.068

  129. Masuda Y, Kato K (2008) Synthesis of nanocrystal assembled TiO2 particles by boric acid free liquid phase crystal deposition. J Cerma Soc Jpn 116:422–425. https://doi.org/10.2109/jcersj2.116.422

  130. Lee SC, Yu H, Yu J, Ao CH (2006) Fabrication, characterization and photocatalytic activity of preferentially oriented TiO2 films. J Cryst Growth 295:60–68. https://doi.org/10.1016/j.jcrysgro.2006.05.086

  131. Gutiérrez-Tauste D, Domènech X, Angeles Hernández-Fenollosa M, Ayllón JA (2006) Alternative fluoride scavengers to produce TiO2 films by the liquid phase deposition (LPD) technique. J Mater Chem 16:2249–2255. https://doi.org/10.1039/b515367k

  132. Gao Y, Masuda Y, Koumoto K (2003) Band gap energy of SrTio3 thin film prepared by the liquid phase deposition method. J Korean Ceram Soc 40:213–218. https://doi.org/10.4191/kcers.2003.40.3.213

  133. Deki S et al (2004) Aqueous solution-based synthesis of rare earth-doped metal oxide thin films. Thin Solid Films 460:83–86. https://doi.org/10.1016/j.tsf.2004.01.077

    Article  CAS  Google Scholar 

  134. Deki S, Iizuka S, Mizuhata M, Kajinami A (2005) Fabrication of nano-structured materials from aqueous solution by liquid phase deposition. J Electroanal Chem 584:38–43. https://doi.org/10.1016/j.jelechem.2004.05.027

    Article  CAS  Google Scholar 

  135. Hsu M-C, Leu I-C, Sun Y-M, Hon M-H (2005) Fabrication of CdS@TiO2 coaxial composite nanocables arrays by liquid-phase deposition. J Cryst Growth 285:642–648. https://doi.org/10.1016/j.jcrysgro.2005.08.060

  136. Ko HYY, Mizuhata M, Kajinami A, Deki S (2005) The dispersion of Au nanoparticles in SiO2/TiO2 layered films by the liquid phase deposition (LPD) method. Thin Solid Films 491:86–90. https://doi.org/10.1016/j.tsf.2005.05.028

  137. Begum NS, Farveez Ahmed HM, Hussain OM (2008) Characterization and photocatalytic activity of boron-doped TiO2 thin films prepared by liquid phase deposition technique. Bull Mater Sci 31:741–745. https://doi.org/10.1007/s12034-008-0117-y

  138. Begum NS, Farveez Ahmed HM, Gunashekar KR (2008) Effects of Ni doping on photocatalytic activity of TiO2 thin films prepared by liquid phase deposition technique. Bull Mater Sci 31:747–751. https://doi.org/10.1007/s12034-008-0118-x

  139. Ko HYY, Mizuhata M, Kajinami A, Deki S (2003) Fabrication of high performance thin films from metal fluorocomplex aqueous solution by the liquid phase deposition. J Fluorine Chem 120:157–163. https://doi.org/10.1016/s0022-1139(02)00325-1

    Article  CAS  Google Scholar 

  140. Tsukuma K, Akiyama T, Imai H (1997) Liquid phase deposition film of tin oxide. J Non Cryst Solids 210:48–54. https://doi.org/10.1016/s0022-3093(96)00583-2

    Article  CAS  Google Scholar 

  141. Mizuhata M, Umekage Y, Nakata A, Kumaresan R, Deki S (2009) Room-temperature synthesis of monodispersed SnO2 nanoparticles by liquid phase deposition. Chem Lett 38:974–975. https://doi.org/10.1246/cl.2009.974

  142. Matsushima Y, Satoh R, Kawai T, Maeda K, Suzuki T (2010) Characterization of SnO2 thin films prepared by a liquid phase deposition method and dynamic responses to alcohol vapors. J Cerma Soc Jpn 118:206–212. https://doi.org/10.2109/jcersj2.118.206

  143. Mahadeva SK, Kim J (2011) Hybrid nanocomposite based on cellulose and tin oxide: growth, structure, tensile and electrical characteristics. Sci Technol Adv Mater 12:055006. https://doi.org/10.1088/1468-6996/12/5/055006

    Article  CAS  Google Scholar 

  144. Caruntu G, Bush GG, O’Connor CJ (2004) Synthesis and characterization of nanocrystalline zinc ferrite films prepared by liquid phase deposition. J Mater Chem 14:2753. https://doi.org/10.1039/b401192a

    Article  CAS  Google Scholar 

  145. Deki S, Miki H, Sakamoto M-A, Mizuhata M (2007) Fabrication of copper ferrite thin films from aqueous solution by the liquid-phase deposition method. Chem Lett 36:518–519. https://doi.org/10.1246/cl.2007.518

    Article  CAS  Google Scholar 

  146. Caruntu G, Newell A, Caruntu D, O’Connor CJ (2007) Magnetic properties of nanostructured CoxFe3−xO4 (0<x<0.2) thin films obtained by a low-temperature soft solution processing method. J Alloys Compd 434–435:637–640. https://doi.org/10.1016/j.jallcom.2006.08.270

  147. Gabriel C, O’Connor Charles J (2006) Liquid phase deposition of transition metal ferrite thin films: synthesis and magnetic properties. J Korean Ceram Soc 43:703–709. https://doi.org/10.4191/kcers.2006.43.11.703

    Article  Google Scholar 

  148. Kumar K, Ramamoorthy K, Koinkar PM, Chandramohan R, Sankaranarayanan K (2006) A novel way of modifying nano grain size by solution concentration in the growth of ZnAl2O4 thin films. J Nanopart Res 9:331–335. https://doi.org/10.1007/s11051-006-9108-3

  149. Yourdkhani A, Caruntu D, Perez AK, Caruntu G (2014) Liquid phase deposition of barium hexaferrite thin films. J Phys Chem C 118:1774–1782. https://doi.org/10.1021/jp409634x

    Article  CAS  Google Scholar 

  150. Yourdkhani A, Caruntu G (2011) Highly ordered transition metal ferrite nanotube arrays synthesized by template-assisted liquid phase deposition. J Mater Chem 21:7145. https://doi.org/10.1039/c0jm04441e

    Article  CAS  Google Scholar 

  151. Zhang L, Hui KN, San Hui K, Lee H (2016) High-performance hybrid supercapacitor with 3D hierarchical porous flower-like layered double hydroxide grown on nickel foam as binder-free electrode. J Power Sources 318:76–85. https://doi.org/10.1016/j.jpowsour.2016.04.010

    Article  CAS  Google Scholar 

  152. Zhang L et al (2013) 3D porous layered double hydroxides grown on graphene as advanced electrochemical pseudocapacitor materials. J Mater Chem A 1:9046. https://doi.org/10.1039/c3ta11755c

    Article  CAS  Google Scholar 

  153. Maki H, Inoue M, Mizuhata M (2018) Charge transfer resistance reduction by the interlayer distance expansion of Ni-Al layered double hydroxide for nickel-metal hydride battery anode. Electrochim Acta 270:395–401. https://doi.org/10.1016/j.electacta.2018.03.033

    Article  CAS  Google Scholar 

  154. Khatavkar SN, Sartale SD (2016) α-Fe2O3 thin films by liquid phase deposition: low-cost option for supercapacitor. J Solid State Electrochem 21:2555–2566. https://doi.org/10.1007/s10008-016-3457-3

  155. Khatavkar SN, Sartale SD (2019) α-Fe2O3 thin film on stainless steel mesh: a flexible electrode for supercapacitor. Mater Chem Phys 225:284–291. https://doi.org/10.1016/j.matchemphys.2018.12.079

  156. Khatavkar SN, Sartale SD (2020) Superior supercapacitive performance of grass-like CuO thin films deposited by liquid phase deposition. New J Chem 44:6778–6790. https://doi.org/10.1039/c9nj04201f

    Article  CAS  Google Scholar 

  157. Jubb AM, Allen HC (2010) Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl Mater Interfaces 2:2804–2812. https://doi.org/10.1021/am1004943

    Article  CAS  Google Scholar 

  158. Xia Q, Xu M, Xia H, Xie J (2016) Nanostructured iron oxide/hydroxide-based electrode materials for supercapacitors. ChemNanoMat 2:588–600. https://doi.org/10.1002/cnma.201600110

    Article  CAS  Google Scholar 

  159. Patil SJ, Lokhande CD (2015) Fabrication and performance evaluation of rare earth lanthanum sulfide film for supercapacitor application: effect of air annealing. Mater Design 87:939–948. https://doi.org/10.1016/j.matdes.2015.08.084

    Article  CAS  Google Scholar 

  160. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828. https://doi.org/10.1039/c1cs15060j

    Article  CAS  Google Scholar 

  161. Pandit B, Dhakate SR, Singh BP, Sankapal BR (2017) Free-standing flexible MWCNTs bucky paper: extremely stable and energy efficient supercapacitive electrode. Electrochim Acta 249:395–403. https://doi.org/10.1016/j.electacta.2017.08.013

    Article  CAS  Google Scholar 

  162. Chou S-L, Wang J-Z, Liu H-K, Dou S-X (2008) Electrochemical deposition of porous Co(OH)2 nanoflake films on stainless steel mesh for flexible supercapacitors. J Electrochem Soc 155:A926. https://doi.org/10.1149/1.2988739

  163. Chodankar NR, Dubal DP, Kwon Y, Kim D-H (2017) Direct growth of FeCo2O4 nanowire arrays on flexible stainless steel mesh for high-performance asymmetric supercapacitor. NPG Asia Materials 9:e419. https://doi.org/10.1038/am.2017.145

  164. Chodankar NR, Dubal DP, Ji S-H, Kim D-H (2018) Superfast electrodeposition of newly developed RuCo2O4 nanobelts over low-cost stainless steel mesh for high-performance aqueous supercapacitor. Adv Mater Interfaces 5:1800283. https://doi.org/10.1002/admi.201800283

  165. Lu X et al (2014) Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv Mater 26:3148–3155. https://doi.org/10.1002/adma.201305851

    Article  CAS  Google Scholar 

  166. Shi C, Zhao Q, Li H, Liao Z-M, Yu D (2014) Low cost and flexible mesh-based supercapacitors for promising large-area flexible/wearable energy storage. Nano Energy 6:82–91. https://doi.org/10.1016/j.nanoen.2014.03.011

    Article  CAS  Google Scholar 

  167. Khatavkar SN, Sartale SD (2020) Fabrication and evaluation of symmetric flexible solid state supercapacitor device based on α-Fe2O3 thin films by LPD. AIP Conf Proc; in press

    Google Scholar 

  168. Peng SM et al (2016) Low-cost superior solid-state symmetric supercapacitors based on hematite nanocrystals. Nanotechnology 27:505404. https://doi.org/10.1088/0957-4484/27/50/505404

    Article  CAS  Google Scholar 

  169. Ramadoss A et al (2017) Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-dimensional-graphene/graphite-paper. J Power Sources 337:159–165. https://doi.org/10.1016/j.jpowsour.2016.10.091

    Article  CAS  Google Scholar 

  170. Huang G et al (2015) High-performance all-solid-state yarn supercapacitors based on porous graphene ribbons. Nano Energy 12:26–32. https://doi.org/10.1016/j.nanoen.2014.11.056

    Article  CAS  Google Scholar 

  171. Yao L et al (2018) Flexible graphene/carbon nanotube hybrid papers chemical-reduction-tailored by gallic acid for high-performance electrochemical capacitive energy storages. Appl Surf Sci 435:699–707. https://doi.org/10.1016/j.apsusc.2017.11.163

    Article  CAS  Google Scholar 

  172. Chou S, Cheng F, Chen J (2006) Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films. J Power Sources 162:727–734. https://doi.org/10.1016/j.jpowsour.2006.06.033

  173. Chou S-L, Wang J-Z, Liu H-K, Dou S-X (2008) Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery. J Power Sources 182:359–364. https://doi.org/10.1016/j.jpowsour.2008.03.083

  174. Shinde SK, Dubal DP, Ghodake GS, Kim DY, Fulari VJ (2016) Morphological tuning of CuO nanostructures by simple preparative parameters in SILAR method and their consequent effect on supercapacitors. Nano Struct Nano Objects 6:5–13. https://doi.org/10.1016/j.nanoso.2016.01.004

    Article  CAS  Google Scholar 

  175. Senthilkumar V et al (2015) Comparative supercapacitance performance of CuO nanostructures for energy storage device applications. RSC Adv 5:20545–20553. https://doi.org/10.1039/c5ra00035a

    Article  CAS  Google Scholar 

  176. Dahlqvist M, Alling B, Rosén J (2010) Stability trends of MAX phases from first principles. Phys Rev B 81:220102. https://doi.org/10.1103/PhysRevB.81.220102

    Article  CAS  Google Scholar 

  177. Wang Y et al (2016) Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J Power Sources 327:221–228. https://doi.org/10.1016/j.jpowsour.2016.07.062

    Article  CAS  Google Scholar 

  178. Wang B et al (2014) Two steps in situ structure fabrication of Ni–Al layered double hydroxide on Ni foam and its electrochemical performance for supercapacitors. J Power Sources 246:747–753. https://doi.org/10.1016/j.jpowsour.2013.08.035

    Article  CAS  Google Scholar 

  179. Zhang L, Chen R, Hui KN, Hui KS, Lee H (2017) Hierarchical ultrathin NiAl layered double hydroxide nanosheet arrays on carbon nanotube paper as advanced hybrid electrode for high performance hybrid capacitors. Chem Eng J 325:554–563. https://doi.org/10.1016/j.cej.2017.05.101

    Article  CAS  Google Scholar 

  180. Béléké AB, Hosokawa A, Mizuhata M, Deki S (2009) Preparation of α-nickel hydroxide/carbon composite by the liquid phase deposition method. J Cerma Soc Jpn 117:392–394. https://doi.org/10.2109/jcersj2.117.392

    Article  Google Scholar 

  181. Béléké AB, Mizuhata M (2010) Electrochemical properties of nickel–aluminum layered double hydroxide/carbon composite fabricated by liquid phase deposition. J Power Sources 195:7669–7676. https://doi.org/10.1016/j.jpowsour.2010.05.068

    Article  CAS  Google Scholar 

  182. Béléké AB, Higuchi E, Inoue H, Mizuhata M (2014) Durability of nickel–metal hydride (Ni–MH) battery cathode using nickel–aluminum layered double hydroxide/carbon (Ni–Al LDH/C) composite. J Power Sources 247:572–578. https://doi.org/10.1016/j.jpowsour.2013.08.001

    Article  CAS  Google Scholar 

  183. Gou Q-Z et al (2018) Correction to: Facile synthesis of porous Mn2O3/TiO2 microspheres as anode materials for lithium-ion batteries with enhanced electrochemical performance. J Mater Sci Mater Electron 29:20530–20530. https://doi.org/10.1007/s10854-018-0231-6

Download references

Acknowledgment

SNK is grateful to Swarda Khatavkar for fruitful discussions. The electrochemical measurements were performed on IVIUM vertex 1A potentiostat/galvanostat donated by Alexander von Humboldt foundation, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrikrishna D. Sartale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khatavkar, S.N., Sartale, S.D. (2021). Liquid Phase Deposition of Nanostructured Materials for Supercapacitor Applications. In: Ezema, F.I., Lokhande, C.D., Jose, R. (eds) Chemically Deposited Nanocrystalline Metal Oxide Thin Films. Springer, Cham. https://doi.org/10.1007/978-3-030-68462-4_26

Download citation

Publish with us

Policies and ethics