Skip to main content

Application of Pharmaceutical Nanotechnology in the Treatment of Cancer

  • Chapter
  • First Online:
Advances in Cancer Treatment

Abstract

This chapter defines what is pharmaceutical nanotechnology and what are the classifications of the nanosystems most used in the encapsulation of drugs, such as liposomes, polymeric nanoparticles, micelles, and solid lipid nanoparticles. This chapter also addresses the main functions of nanosystems in cancer, discusses briefly about their use in the diagnosis and treatment of cancer, and discusses about the examples of products that are under development, as well as products already available on the market for the treatment of the most diverse types of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leso V, Fontana L, Lavicoli I (2019) Biomedical nanotechnology: occupational views. NanoToday 24:10–14

    Article  Google Scholar 

  2. Puri A, Loomis K, Smith B, Lee J, Yavlovich A, Heldman E et al (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 26(6):523–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kumar CSSR (2010) Nanotechnology tools in pharmaceutical R&D. Mater Today 12(Supplement 1):24–30

    Article  CAS  Google Scholar 

  4. Zorzi GK, Carvalho ELS, von Poser GL, Teixeira HF (2015) Sobre o uso de baseado em nanotecnologia para associação de matrizes complexas de extratos vegetais. Rev Bras 25 (4):426–436

    Google Scholar 

  5. Demetzos C (2016) Application of nanotechnology in drug delivery and targeting. In: Pharmaceutical Nanotechnology. Adis, Singapore

    Google Scholar 

  6. Alexander A, Ajazuddin, Patel RJ, Saraf S, Saraf S (2016) Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J Control Release 241:110–124

    Article  CAS  PubMed  Google Scholar 

  7. Martínez-Ballesta M, Gil-Izquierdo A, García-Viguera C, Domínguez-Perles R (2018) Nanoparticles and controlled delivery for bioactive compounds: outlining challenges for new “smart-foods” for health. Foods 7(5):72

    Google Scholar 

  8. Lombardo D, Kiselev MA, Caccamo MT (2019) Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 2019:3702518

    Google Scholar 

  9. Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin F et al (2019) Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 23:20

    Google Scholar 

  10. Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 9:E128–E147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mei L, Zhang Z, Zhao L, Huang L, Yang X, Tang J et al (2013) Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev 65(6):880–890

    Article  CAS  PubMed  Google Scholar 

  12. Pimentel LF, Jacomé Junior AT, Mosqueira VCF, Santos-Magalhães NS (2007) Nanotecnologia farmacêutica aplicada ao tratamento da malária. Revista Brasileira de Ciências Farmacêuticas 43(4):503–514

    Article  CAS  Google Scholar 

  13. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102

    Google Scholar 

  14. Monteiro N, Martins A, Reis RL, Neves NM (2014) Liposomes in tissue engineering and regenerative medicine. J R Soc Interface 11(101):20140459

    Google Scholar 

  15. Batista CM, Carvalho CMB, Magalhães NSS (2007) Lipossomas e suas aplicações terapêuticas: estado da arte. Revista Brasileira de Ciências Farmacêuticas 43(2):167–179

    Google Scholar 

  16. Gao W, Hu CJ, Fang RH, Zhang L (2013a) Liposome-like nanostructures for drug delivery. J Mater Chem B 1(48):6569–6585

    Google Scholar 

  17. Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomedicine 10:975–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee Y, Thompson DH (2017) Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(5)

    Google Scholar 

  19. Abraham SA, Waterhouse DN, Mayer LD, Cullis PR, Madden TD, Bally MB (2005) The liposomal formulation of doxorubicin. Methods Enzymol 391:71–97

    Article  CAS  PubMed  Google Scholar 

  20. Hong SS, Choi JY, Kim JO, Lee M, Kim SH, Lim S (2016) Development of paclitaxel-loaded liposomal nanocarrier stabilized by triglyceride incorporation. Int J Nanomedicine 11:4465–4477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang ST, Wang YP, Chen YH, Lin CT, Li WS, Wu HC (2018a) Liposomal paclitaxel induces fewer hematopoietic and cardiovascular complications than bioequivalent doses of Taxol. Int J Oncol 53(3):1105–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Day CM, Hickey SM, Song Y, Plush SE, Garg S (2020) Novel tamoxifen nanoformulations for improving breast cancer treatment: old wine in new bottles. Molecules 25(5):1182

    Google Scholar 

  23. Lindman B, Wennerstrom H (1980) Micelles. In: Micelles. Topics in current chemistry, vol 87. Springer, Berlin, Heidelberg

    Google Scholar 

  24. Santos MS, Tavares FW, Biscaia EC Jr (2016) Molecular thermodynamics of micellization: micelle size distributions and geometry transitions. Braz J Chem Eng 33(3):515–524

    Google Scholar 

  25. Daruwalla J, Greish K, Nikfarjam M, Millar I, Malcontenti-Wilson C, Klyer A et al (2007) Evaluation of the effect of SMA-pirarubicin micelles on colorectal cancer liver metastases and of hyperbaric oxygen in CBA mice. J Drug Target 17(7–8):487–495

    Article  CAS  Google Scholar 

  26. Gao H, Liu J, Yang C, Cheng T, Chu L, Xu H et al (2013b) The impact of PEGylation patterns on the in vivo biodistribution of mixed shell micelles. Int J Nanomedicine 8:4229–4246

    PubMed  PubMed Central  Google Scholar 

  27. Nirei T, Ishihara S, Tanaka T, Kiyomatsu T, Kawai K, Hata K et al (2017) Polymeric micelles loaded with (1,2-diaminocyclohexane)platinum(II) against colorectal cancer. J Surg Res 218:334–340

    Article  CAS  PubMed  Google Scholar 

  28. Ma W, Guo Q, Li Y, Wang X, Wang J, Tu P (2017) Co-assembly of doxorubicin and curcumin targeted micelles for synergistic delivery and improving anti-tumor efficacy. Eur J Pharm Biopharm 112:209–223

    Article  CAS  PubMed  Google Scholar 

  29. Orian-Rousseau V, Ponta H (2015) Perspectives of CD44 targeting therapies. Arch Toxicol 89:3–14

    Article  CAS  PubMed  Google Scholar 

  30. Schmitt M, Metzger M, Gradl D, Davidson G, Orian-Rousseau V (2015) CD44 functions in Wnt signaling by regulating LRP6 localization and activation. Cell Death Differ 22:677–689

    Article  CAS  PubMed  Google Scholar 

  31. Zou W, Sarisozen C, Torchilin VP (2017) The reversal of multidrug resistance in ovarian carcinoma cells by co-application of tariquidar and paclitaxel in transferrin-targeted polymeric micelles. J Drug Target 25:225–234

    Article  CAS  PubMed  Google Scholar 

  32. Schaffazick SR, Guterres SS, Freitas LL, Pohlmann AR (2003) Caracterização e estabilidade físico-química de sistemas poliméricos nanopartículados para administração de fármacos. Química Nova 26(5):726–737

    Article  CAS  Google Scholar 

  33. Souto EB, Severino P, Santana MHA (2012) Preparação de nanopartículas poliméricas a partir da polimerização de monômeros – Parte I. Polímeros 22(1):96–100

    Google Scholar 

  34. Crucho CIC, Barros MT (2017) Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater Sci Eng C 80:771–784

    Article  CAS  Google Scholar 

  35. El-Say KM, El-Sawy HS (2017) Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm 528(1–2):675–691

    Article  CAS  PubMed  Google Scholar 

  36. Sun B, Feng SS (2009) Trastuzumab-functionalized nanoparticles of biodegradable copolymers for targeted delivery of docetaxel. Nanomedicine 4(4):431–445

    Google Scholar 

  37. Lince F, Bolognesi S, Stella B, Marchisio DL, Dosio F (2011) Preparation of polymer nanoparticles loaded with doxorubicin for controlled drug delivery. Chem Eng Res Des 89(11):2410–2419

    Article  CAS  Google Scholar 

  38. Hu J, Fu S, Peng Q, Han YW, Xie J, Zan N et al (2017) Paclitaxel-loaded polymeric nanoparticles combined with chronomodulated chemotherapy on lung cancer: in vitro and in vivo evaluation. Int J Pharm 516(1–2):313–322

    Article  CAS  PubMed  Google Scholar 

  39. Jamil A, Mirza MA, Anwer MK, Thakur PS, Alshahrani SM, Alshetaili AS et al (2019) Co-delivery of gemcitabine and simvastatin through PLGA polymeric nanoparticles for the treatment of pancreatic cancer: in-vitro characterization, cellular uptake, and pharmacokinetic studies. Drug Dev Ind Pharm 45(5):745–753

    Article  CAS  PubMed  Google Scholar 

  40. Mukherjee S, Ray S, Thakur RS (2009) Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci 71(4):349–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Naseri N, Valizadeh H, Zakeri-Milani P (2015) Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 5(3):305–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Souto EB, Severino P, Santana MHA, Pinho SC (2011) Nanopartículas de lipídios sólidos: métodos clássicos de produção laboratorial. Química Nova 34(10):1762–1767

    Google Scholar 

  43. Bayón-Cordero I, Alkorta I, Arana L (2019) Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nano 9(3):474

    Google Scholar 

  44. García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, Sarabia F, Prados J, Melguizo C et al (2019) Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials (Basel) 9(4):638

    Google Scholar 

  45. Zhang X, Liu J, Li X, Li F, Lee RJ, Sun F et al (2019) Trastuzumab-coated nanoparticles loaded with docetaxel for breast cancer therapy. Dose-Response 17(3):1559325819872583

    Google Scholar 

  46. Garg NK, Singh B, Jain A, Nirbhavane P, Sharma R, Tyagi RK et al (2016) Fucose decorated solid-lipid nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics. Colloids Surf B: Biointerfaces 146:114–126

    Article  CAS  PubMed  Google Scholar 

  47. Naseri N, Zakeri-Milani P, Hamishehkar H, Pilehvar-Soltanahmadi Y, Valizadeh H (2017) Development, in vitro characterization, antitumor and aerosol performance evaluation of respirable prepared by self-nanoemulsification method. Drug Res 67(6):343–348

    Article  CAS  Google Scholar 

  48. Xu W, Bae EJ, Lee MK (2018) Enhanced anticancer activity and intracellular uptake of paclitaxel-containing solid lipid nanoparticles in multidrug-resistant breast cancer cells. Int J Nanomedicine 13:7549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rajpoot K, Jain SK (2018) Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: preparation, optimization, and in vitro evaluation. Artif Cells Nanomedicine Biotechnol 46(6):1236–1247

    Article  CAS  Google Scholar 

  50. Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14(11):21266–21305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bao Y, Wen T, Samia ACS, Khandhar A, Krishnan KM (2016) Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. J Mater Sci 51(1):513–553

    Article  CAS  PubMed  Google Scholar 

  52. Gertz F, Khitun A (2016) Biological cell manipulation by magnetic nanoparticles. AIP Adv 6:025308

    Google Scholar 

  53. Giustini AJ, Petryk AA, Cassim SM, Tate JA, Baker I, Hoopes PJ (2010) Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life 1(1n02):10.1142/S1793984410000067

    Google Scholar 

  54. Chatterjee DK, Diagaradjane P, Krishnan S (2011) Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv 2(8):1001–1014

    Article  CAS  PubMed  Google Scholar 

  55. Behrouzkia Z, Joveini Z, Keshavarzi B, Eyvazzadeh N, Aghdam RZ (2016) Hyperthermia: how can it be used? Oman Med J 31(2):89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Navya PN, Daima HK (2016) Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Converg 3(1):1

    Google Scholar 

  57. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lopes JC, Torres MLP (2019) Utilização de nanopartículas no tratamento do câncer: aspectos gerais, mecanismos de ação antineoplásicos e aplicabilidades tumorais. Revista Brasileira de Cancerologia 65(4):e-13400

    Google Scholar 

  59. Bai DP, Zhang XF, Zhang GL, Huang YF, Gurunathan S (2017) Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. Int J Nanomedicine 12:6521–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. He Y, Du Z, Ma S, Liu Y, Li D, Huang H et al (2016) Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int J Nanomedicine 11:1879–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bhanumathi R, Manivannan M, Thangaraj R, Kannan S (2018) Drug-carrying capacity and anticancer effect of the folic acid- and berberine-loaded silver nanomaterial to regulate the akt-erk pathway in breast cancer. ACS Omega 3(7):8317–8328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Frank D, Tyagi C, Tomar L, Choonara YE, du Toit LC, Kumar P et al (2014) Overview of the role of nanotechnological innovations in the detection and treatment of solid tumors. Int J Nanomedicine 9:589–613

    PubMed  PubMed Central  Google Scholar 

  63. Bor G, Azmi IDM, Yaghmur A (2019) Nanomedicines for cancer therapy: current status, challenges and future prospects. Ther Deliv 10(2):113–132

    Google Scholar 

  64. Sensenig R, Sapir Y, MacDonald C, Cohen S, Polyak B (2012) Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomedicine (Lond) 7(9):1425–1442

    Article  CAS  Google Scholar 

  65. Martinelli C, Pucci C, Ciofani G (2019) Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioeng 3(1):011502

    Google Scholar 

  66. Wahajuddin AS (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445–3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen H, Zhen Z, Todd T, Chu PK, Xie J (2013) Nanoparticles for improving cancer diagnosis. Mater Sci Eng R Rep 74(3):35–69

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gogoi M, Kumar N, Patra S (2016) Multifunctional magnetic liposomes for cancer imaging and therapeutic applications. In: Holban AM, Grumezescu G (eds) Nanoarchitectonics smart delivery drug targeting, pp 743–782

    Chapter  Google Scholar 

  69. Siddique S, Chow JCL (2020) Application of nanomaterials in biomedical imaging and cancer therapy. Nano 10(9):1700

    Google Scholar 

  70. Ferreira M, Sousa J, Pais A, Vitorino C (2020) The role of magnetic nanoparticles in cancer nanotheranostics. Materials (Basel) 13(2):266

    Google Scholar 

  71. Boisseau P, Loubaton B (2011) Nanomedicine, nanotechnology in medicine. Comptes Rendus Physique 12:620–636

    Article  CAS  Google Scholar 

  72. Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115(19):10530–10574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yoon HJ, Kozminsky M, Nagrath S (1995–2017) Emerging role of nanomaterials in circulating tumor cell isolation and analysis. ACS Nano 8(3):2014

    Google Scholar 

  74. Myung JH, Tam KA, Park S, Cha A, Hong S (2016) Recent advances in nanotechnology-based detection and separation of circulating tumor cells. WIREs Nanomed Nanobiotechnol 8:223–239

    Article  Google Scholar 

  75. Huang Q, Wang Y, Chen X, Wang Y, Li Z, Du S et al (2018b) Nanotechnology-based strategies for early cancer diagnosis using circulating tumor cells as a liquid biopsy. Nano 2(1):21–41

    Google Scholar 

  76. Browning RJ, Reardon PJT, Parhizkar M, Pedley RB, Edirisinghe M, Knowles JC et al (2017) Drug delivery strategies for platinum-based chemotherapy. ACS Nano 11:8560–8578

    Article  CAS  PubMed  Google Scholar 

  77. Fernandes C, Suares D, Yergeri MC (2018) Tumor microenvironment targeted nanotherapy. Front Pharmacol 9:1230

    Google Scholar 

  78. Qiao Y, Wan J, Zhou L, Ma W, Yang Y, Luo W et al (2019) Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. WIREs Nanomedicine Nanobiotechnol 11(1):e1527

    Google Scholar 

  79. Kang H, Hu S, Cho MH, Hong SH, Choi Y, Choi HS (2018) Theranostic nanosystems for targeted cancer therapy. Nano Today 23:59–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Green AE, Rose PG (2006) Pegylated liposomal doxorubicin in ovarian cancer. Int J Nanomedicine 1(3):229–239

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Pandey H, Rani R, Agarwal V (2016) Liposome and their applications in cancer therapy. Braz Arch Biol Technol 59: e16150477

    Google Scholar 

  82. Zhao N, Woodle MC, Mixson AJ (2018) Advances in delivery systems for doxorubicin. J Nanomedicine Nanotechnol 9(5):519

    Google Scholar 

  83. Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, Velázquez-Fernández JB, Vallejo-Cardona AA (2019) Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnol 10:11

    Google Scholar 

  84. Sanna V, Pala N, Sechi M (2014) Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine 9:467–483

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Anselmo AC, Mitragotri S (2019) Nanoparticles in the clinic: an update. Bioeng Transl Med 4(3):e10143

    Google Scholar 

  86. Chen N, Brachmann C, Liu X, Pierce DW, Dey J, Keerwin WS et al (2015) Albumin-bound nanoparticle (nab) paclitaxel exhibits enhanced paclitaxel tissue distribution and tumor penetration. Cancer Chemother Pharmacol 76:699–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Narayanan V, Weekes CD (2015) Nanoparticle albumin-bound (nab)-paclitaxel for the treatment of pancreas ductal adenocarcinoma. Gastrointest Cancer Targets Ther 5:11–19

    Google Scholar 

  88. Giordano G, Pancione M, Olivieri N, Parcesepe P, Velocci M, Raimo TD et al (2017) Nano albumin bound-paclitaxel in pancreatic cancer: current evidences and future directions. World J Gastroenterol 23(32):5875–5886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Woo W, Carey ET, Choi M (2019) Spotlight on liposomal irinotecan for metastatic pancreatic cancer: patient selection and perspectives. Onco Targets Ther 12:1455–1463

    Article  PubMed  PubMed Central  Google Scholar 

  90. Vieira DB, Gamarra LF (2016) Avanços na utilização de nanocarreadores no tratamento e no diagnóstico de câncer. Einstein 14(1):99–103

    Article  PubMed  PubMed Central  Google Scholar 

  91. Olusanya TOB, Ahmad RRH, Ibegbu DM, Smith JR, Elkordy AA (2018) Liposomal drug delivery systems and anticancer drugs. Molecules 23(4):907

    Google Scholar 

  92. Ventola CL (2017) Progress in nanomedicine: approved and investigational nanodrugs. Pharm Ther 42(12):742–755

    Google Scholar 

  93. Khan FA (2020) Major nano-based products: nanomedicine, nanosensors, and nanodiagnostics. Applications of Nanomaterials in Human Health, Springer, Singapore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cavalcanti, I.D.L., Soares, J.C.S. (2021). Application of Pharmaceutical Nanotechnology in the Treatment of Cancer. In: Advances in Cancer Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-68334-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68334-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68333-7

  • Online ISBN: 978-3-030-68334-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics