Skip to main content

Roles of the Phenol OHs for the Reducing Ability of Antioxidant Acylphloroglucinols. A DFT Study

  • Conference paper
  • First Online:
Advances in Methods and Applications of Quantum Systems in Chemistry, Physics, and Biology

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 33))

Abstract

Acylphloroglucinols (ACPLs) are a large class of compounds structurally derived from 1,3,5-trihydroxybenzene and characterised by the presence of a CRO group. Many ACPLs of natural origin exhibit biological activities. The antioxidant activity is particularly significant for ACPLs with substituents containing additional O atoms and additional C=C double bonds. Previous works have investigated most ACPLs with reported antioxidant activity, modelling their reducing ability through the consideration of complexes of their molecules with a Cu2+ ion. Phenol OHs are known to be the major responsible of the antioxidant activity of hydroxybenzenes. The current work considers selected antioxidant ACPLs and investigates the effect of the removal of one or more phenol OHs on the molecules’ ability to coordinate and reduce a Cu2+ ion. Calculations were performed at the DFT/B3LYP level with the 6-31+G(d,p) basis set for the C, O and H atoms and the LANL2DZ pseudopotential for the Cu2+ ion. For all the structures considered, the best characteristics of the complex correspond to the cases when the ion binds to two sites simultaneously. Besides obvious roles of the phenol OHs as binding sites, the results indicate influences of these OHs on the molecule-ion affinity of the complexes, on the strength of the intramolecular hydrogen bonds in the molecule, and on the distribution of the spin of the unpaired electron in the molecular ion resulting from complexation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Athanasas K, Magiatis P, Fokialakis N, Skaltsounis AL, Pratsinis H, Kletsas D (2004) J Nat Prod 67:973–977

    Article  CAS  PubMed  Google Scholar 

  2. Peuchen S, Bolanos JP, Heales SJR, Almeida A, Duchen MR, Clark JB (1997) Prog Neurobiol 52:261–281

    Article  CAS  PubMed  Google Scholar 

  3. Facchinetti F, Dawson VL, Dawson TM (1998) Cell Mol Neurobiol 18:667–677

    CAS  PubMed  Google Scholar 

  4. Verotta L (2003) Phytochem Rev 1:389–407

    Article  Google Scholar 

  5. Chiodo SG, Leopoldini M, Russo N, Toscano M (2010) Phys Chem Chem Phys 12:7662–7670

    Article  CAS  PubMed  Google Scholar 

  6. Leopoldini M, Prieto Pitarch I, Russo N, Toscano M (2004) J Phys Chem a 108:92–96

    Article  CAS  Google Scholar 

  7. Leopoldini M, Marino T, Russo N, Toscano M (2004) J Phys Chem a 108:4916–4922

    Article  CAS  Google Scholar 

  8. Leopoldini M, Marino T, Russo N, Toscano M (2004) Theor Chem Acc 111:210–216

    Article  CAS  Google Scholar 

  9. Leopoldini M, Russo N, Toscano M (2006) J Agric Food Chem 54:3078–3085

    Article  CAS  PubMed  Google Scholar 

  10. Leopoldini M, Russo N, Toscano M (2007) J Agric Food Chem 55:7944–7949

    Article  CAS  PubMed  Google Scholar 

  11. Leopoldini M, Russo N, Toscano M (2011) Food Chem 125:288–306

    Article  CAS  Google Scholar 

  12. Leopoldini M, Chiodo SG, Russo N, Toscano M (2011) J Chem Theory Comput 7:4218–4233

    Article  CAS  PubMed  Google Scholar 

  13. Bentes ALA, Borges RS, Monteiro WR, Luiz GM, de Macedo LGM, Alves CN (2011) 16:1749–1760

    Google Scholar 

  14. Iuga C, Alvarez-Idaboy JR, Russo N (2012) J Org Chem 77:3868–3877

    Article  CAS  PubMed  Google Scholar 

  15. Mazzone G, Malaj N, Galano A, Russo N, Toscano M (2015) RSC Advances 5:565–575

    Article  CAS  Google Scholar 

  16. Galano A, Mazzone G, Alvarez-Diduk R, Marino T, Alvarez-Idaboy JR, Russo N (2016) Annu Rev Food Sci Technol 7:335–352

    Article  CAS  PubMed  Google Scholar 

  17. Singh IP, Bharate SB (2006) Nat Prod Rep 23:558

    Article  CAS  Google Scholar 

  18. Mammino L, Kabanda MM (2007) J Mol Struct (Theochem) 805:39–52

    Article  CAS  Google Scholar 

  19. Mammino L, Kabanda MM (2009) J Mol Struct (Theochem) 901:210–219

    Article  CAS  Google Scholar 

  20. Mammino L, Kabanda MM (2013) Molec Simul 39(1):1–13

    Article  CAS  Google Scholar 

  21. Mammino L, Kabanda MM (2012) Int J Quant Chem 112:2650–2658

    Article  CAS  Google Scholar 

  22. Kabanda MM, Mammino L (2012) Int J Quant Chem 112:3691–3702

    CAS  Google Scholar 

  23. Mammino L (2013) J Mol Model 19:2127–2142

    Article  CAS  PubMed  Google Scholar 

  24. Mammino L (2017) Molecules 22:1294. https://doi.org/10.3390/molecules22081294

  25. Mammino L (2017). J Mol Model. https://doi.org/10.1007/s00894-017-3443-4

    Article  PubMed  Google Scholar 

  26. Mammino L (2019) J Mol Struct 1176:488–500

    Article  CAS  Google Scholar 

  27. Mammino L (2019) Adv Quantum Chem 78:83–108

    Article  CAS  Google Scholar 

  28. Mammino L (2019) Theor Chem Acc 138:15. https://doi.org/10.1007/s00214-018-2381-2

    Article  CAS  Google Scholar 

  29. Mammino L (2019) Pure Appl Chem 91(4):597–608

    Article  CAS  Google Scholar 

  30. Mammino L (2019) Theor Chem Acc 78:83–108

    CAS  Google Scholar 

  31. Mammino L, Mammino L, Maruani J, Ceresoli D, Brändas EJ (eds) (2020) Advances in quantum systems in chemistry, physics and biology; Progress in theoretical chemistry and physics, vol 32. Springer, pp 158−182

    Google Scholar 

  32. Alagona G, Ghio C (2009) Phys Chem Chem Phys 11:776–790

    Article  CAS  PubMed  Google Scholar 

  33. Alagona G, Ghio C (2009) J Phys Chem A 113:15206–15216

    Article  CAS  PubMed  Google Scholar 

  34. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785–789

    Article  Google Scholar 

  36. Hay J, Wadt WR (1985) J Chem Phys 82(270):284–299

    Google Scholar 

  37. Siegbahn PEM (2003) Q Rev Biophys 36(1):91–145

    Article  CAS  PubMed  Google Scholar 

  38. Siegbahn PE (2006) J Biol Inorg Chem 11(6):695–701

    Article  CAS  PubMed  Google Scholar 

  39. Reed AE, Weinhold F (1983) J Chem Phys 78(6):4066–4074

    Article  CAS  Google Scholar 

  40. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83(2):735–747

    Article  CAS  Google Scholar 

  41. Reed AE, Weinhold F (1985) J Chem Phys 83(4):1736–1741

    Article  CAS  Google Scholar 

  42. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88(6):899–926

    Article  CAS  Google Scholar 

  43. Carpenter JE, Weinhold F (1988) J Mol Struc (Theochem) 169:41–62

    Article  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian Inc., Pittsburgh

    Google Scholar 

  45. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  46. GaussView 4.1, Gaussian Inc, Pittsburgh

    Google Scholar 

  47. Chem3D, version 8.0.3 (2003) Chemoffice, Cambridge Software

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana Mammino .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 525 kb)

Supplementary file2 (DOC 145 kb)

Supplementary file3 (PDF 1375 kb)

Supplementary file4 (DOC 8140 kb)

Supplementary file5 (PDF 7380 kb)

Supplementary file6 (PDF 1156 kb)

Supplementary file7 (PDF 3803 kb)

Supplementary file8 (PDF 7418 kb)

Supplementary file9 (PDF 1030 kb)

Supplementary file10 (DOC 243 kb)

Supplementary file11 (DOC 109 kb)

Supplementary file12 (DOC 300 kb)

Supplementary file13 (DOC 178 kb)

Supplementary file14 (DOC 1024 kb)

Supplementary file15 (DOC 261 kb)

Supplementary file16 (DOC 170 kb)

Supplementary file17 (DOC 101 kb)

Supplementary file18 (DOC 1073 kb)

Supplementary file19 (DOC 365 kb)

Supplementary file20 (DOC 2109 kb)

Supplementary file21 (DOC 340 kb)

Supplementary file22 (DOC 462 kb)

Supplementary file23 (DOC 154 kb)

Supplementary file24 (DOC 6022 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mammino, L. (2021). Roles of the Phenol OHs for the Reducing Ability of Antioxidant Acylphloroglucinols. A DFT Study. In: Glushkov, A.V., Khetselius, O.Y., Maruani, J., Brändas, E. (eds) Advances in Methods and Applications of Quantum Systems in Chemistry, Physics, and Biology. Progress in Theoretical Chemistry and Physics, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-68314-6_11

Download citation

Publish with us

Policies and ethics