Skip to main content

Machine Learning Accelerated Insights of Perovskite Materials

  • Chapter
  • First Online:
Artificial Intelligence for Materials Science

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 312))

Abstract

In recent years, lead-halide perovskite (LHP) have made tremendous progress in photovoltaic and optoelectronic fields. However, stability and toxicity still are obstacles for commercial application. These challenges have motivated significant efforts to search nontoxic and stable alternatives which could achieve comparable high performance with low-cost and facile fabrication methods. With continuing increasing computation powers, first-principles modeling combining with machine learning (ML) has made significant advances in the discovery of new perovskite materials. This provides invaluable insights into the physical origin for the high performance of perovskites in photovoltaic field, thereby facilitating the discovery of good absorber perovskite materials. This chapter aims to give a brief review of ML-guided design and discovery of perovskite materials for photovoltaics. Specifically, this chapter will introduce well-established ML models widely used in perovskite-related studies from both the construction of data and material representation aspects. The approaches of data sets will be discussed including the high-throughput (HT) computations and experimentations. The material representation will cover descriptors and feature engineering of perovskites in photovoltaic field. Then, we will give a general introduction of recent progress for ML models applications in perovskite solar cells. Conclusion and outlook will be given in the end.

Shuaihua Lu and Yilei Wu contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vasala, S., & Karppinen, M. (2015). A2B′B′′O6 perovskites: A review. Progress in Solid State Chemistry, 43, 1.

    Article  CAS  Google Scholar 

  2. Kobayashi, K. I., Kimura, T., Sawada, H., Terakura, K., & Tokura, Y. (1998). Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature, 395, 677.

    Article  CAS  Google Scholar 

  3. Ju, M.-G., Chen, M., Zhou, Y., Dai, J., Ma, L., Padture, N. P., & Zeng, X. C. (2018). Toward eco-friendly and stable perovskite materials for photovoltaics. Joule, 2, 1231.

    Article  CAS  Google Scholar 

  4. PCE. Retrieved from https://www.nrel.gov/pv/cell-efficiency.html.

  5. Zhao, X.-G., Yang, D., Ren, J.-C., Sun, Y., Xiao, Z., & Zhang, L. (2018). Rational design of halide double perovskites for optoelectronic applications. Joule, 2, 1662.

    Article  CAS  Google Scholar 

  6. Fuelling discovery by sharing. 2013. Nature Materials, 12, 173.

    Google Scholar 

  7. Ghiringhelli, L. M., Vybiral, J., Levchenko, S. V., Draxl, C., & Scheffler, M. (2015). Big data of materials science: Critical role of the descriptor. Physical Review Letters, 114, 105503.

    Article  CAS  Google Scholar 

  8. Sarmiento-Pérez, R., Cerqueira, T. F. T., Körbel, S., Botti, S., & Marques, M. A. L. (2015). Prediction of stable nitride perovskites. Chemistry of Materials, 27, 5957.

    Article  CAS  Google Scholar 

  9. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O., & Walsh, A. (2018). Machine learning for molecular and materials science. Nature, 559, 547.

    Article  CAS  Google Scholar 

  10. Xie, T., & Grossman, J. C. (2018). Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Physical Review Letters, 120, 145301.

    Article  CAS  Google Scholar 

  11. Askerka, M., Li, Z., Lempen, M., Liu, Y., Johnston, A., Saidaminov, M. I., Zajacz, Z., & Sargent, E. H. (2019). Learning-in-templates enables accelerated discovery and synthesis of new stable double perovskites. Journal of the American Chemical Society, 141, 3682.

    Article  CAS  Google Scholar 

  12. Bartel, C. J., Sutton, C., Goldsmith, B. R., Ouyang, R., Musgrave, C. B., Ghiringhelli, L. M., & Scheffler, M. (2019). New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances, 5, eaav0693.

    Article  CAS  Google Scholar 

  13. Curtarolo, S., Setyawan, W., Wang, S., Xue, J., Yang, K., Taylor, R. H., Nelson, L. J., Hart, G. L. W., Sanvito, S., Buongiorno-Nardelli, M., Mingo, N., & Levy, O. (2012). AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations. Computational Materials Science, 58, 227.

    Article  CAS  Google Scholar 

  14. Ong, S. P., Richards, W. D., Jain, A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier, V. L., Persson, K. A., & Ceder, G. (2013). Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Computational Materials Science, 68, 314.

    Article  CAS  Google Scholar 

  15. Hjorth Larsen, A., Jorgen Mortensen, J., Blomqvist, J., Castelli, I. E., Christensen, R., Dulak, M., Friis, J., Groves, M. N., Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C., Bjerre Jensen, P., Kermode, J., Kitchin, J. R., Leonhard Kolsbjerg, E., Kubal, J., Kaasbjerg, K., Lysgaard, S., Bergmann Maronsson, J., Maxson, T., Olsen, T., Pastewka, L., Peterson, A., Rostgaard, C., Schiotz, J., Schutt, O., Strange, M., Thygesen, K. S., Vegge, T., Vilhelmsen, L., Walter, M., Zeng, Z., & Jacobsen, K. W. (2017). The atomic simulation environment—A Python library for working with atoms. Journal of Physics. Condensed Matter, 29, 273002.

    Article  Google Scholar 

  16. Yang, X., Wang, Z., Zhao, X., Song, J., Zhang, M., & Liu, H. (2018). MatCloud: A high-throughput computational infrastructure for integrated management of materials simulation, data and resources. Computational Materials Science, 146, 319.

    Article  CAS  Google Scholar 

  17. Chakraborty, S., Xie, W., Mathews, N., Sherburne, M., Ahuja, R., Asta, M., & Mhaisalkar, S. G. (2017). Rational design: A high-throughput computational screening and experimental validation methodology for lead-free and emergent hybrid perovskites. ACS Energy Letters, 2, 837.

    Article  CAS  Google Scholar 

  18. Li, Y., & Yang, K. (2020). High-throughput computational design of halide perovskites and beyond for optoelectronics. WIREs Computational Molecular Science. https://doi.org/10.1002/wcms.1500.

  19. Körbel, S., Marques, M. A. L., & Botti, S. (2016). Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations. Journal of Materials Chemistry C, 4, 3157.

    Article  CAS  Google Scholar 

  20. Emery, A. A., & Wolverton, C. (2017). High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites. Scientific Data, 4, 170153.

    Article  CAS  Google Scholar 

  21. Zhao, X. G., Yang, J. H., Fu, Y., Yang, D., Xu, Q., Yu, L., Wei, S. H., & Zhang, L. (2017). Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. Journal of the American Chemical Society, 139, 2630.

    Article  CAS  Google Scholar 

  22. Cai, Y., Xie, W., Teng, Y. T., Harikesh, P. C., Ghosh, B., Huck, P., Persson, K. A., Mathews, N., Mhaisalkar, S. G., Sherburne, M., & Asta, M. (2019). High-throughput computational study of halide double perovskite inorganic compounds. Chemistry of Materials, 31, 5392.

    Article  CAS  Google Scholar 

  23. Castelli, I. E., Olsen, T., Datta, S., Landis, D. D., Dahl, S., Thygesen, K. S., & Jacobsen, K. W. (2012). Computational screening of perovskite metal oxides for optimal solar light capture. Energy & Environmental Science, 5, 5814.

    Article  CAS  Google Scholar 

  24. Castelli, I. E., Landis, D. D., Thygesen, K. S., Dahl, S., Chorkendorff, I., Jaramillo, T. F., & Jacobsen, K. W. (2012). New cubic perovskites for one- and two-photon water splitting using the computational materials repository. Energy & Environmental Science, 5, 9034.

    Article  CAS  Google Scholar 

  25. Wang, H.-C., Pistor, P., Marques, M. A. L., & Botti, S. (2019). Double perovskites as p-type conducting transparent semiconductors: A high-throughput search. Journal of Materials Chemistry A, 7, 14705.

    Article  CAS  Google Scholar 

  26. Jiang, X., & Yin, W.-J. (2021). High-throughput computational screening of oxide double perovskites for optoelectronic and photocatalysis applications. Journal of Energy Chemistry, 57, 351–358.

    Article  Google Scholar 

  27. Zhang, T., Cai, Z., & Chen, S. (2020). Chemical trends in the thermodynamic stability and band gaps of 980 halide double perovskites: A high-throughput first-principles study. ACS Applied Materials & Interfaces, 12, 20680.

    Article  CAS  Google Scholar 

  28. Nakajima, T., & Sawada, K. (2017). Discovery of Pb-free perovskite solar cells via high-throughput simulation on the K computer. Journal of Physical Chemistry Letters, 8, 4826.

    Article  CAS  Google Scholar 

  29. Körbel, S., Marques, M. A. L., & Botti, S. (2018). Stable hybrid organic–inorganic halide perovskites for photovoltaics from ab initio high-throughput calculations. Journal of Materials Chemistry A, 6, 6463.

    Article  Google Scholar 

  30. Li, Y., & Yang, K. (2019). High-throughput computational design of organic–inorganic hybrid halide semiconductors beyond perovskites for optoelectronics. Energy & Environmental Science, 12, 2233.

    Article  Google Scholar 

  31. Filip, M. R., & Giustino, F. (2015). Computational screening of homovalent lead substitution in organic–inorganic halide perovskites. The Journal of Physical Chemistry C, 120, 166.

    Article  CAS  Google Scholar 

  32. Unger, E. L., Kegelmann, L., Suchan, K., Sörell, D., Korte, L., & Albrecht, S. (2017). Roadmap and roadblocks for the band gap tunability of metal halide perovskites. Journal of Materials Chemistry A, 5, 11401.

    Article  CAS  Google Scholar 

  33. Kim, C., Huan, T. D., Krishnan, S., & Ramprasad, R. (2017). A hybrid organic-inorganic perovskite dataset. Scientific Data, 4, 170057.

    Article  Google Scholar 

  34. Jacobs, R., Luo, G., & Morgan, D. (2019). Materials discovery of stable and nontoxic halide perovskite materials for high-efficiency solar cells. Advanced Functional Materials, 29, 1804354.

    Article  CAS  Google Scholar 

  35. Sun, S., Hartono, N. T. P., Ren, Z. D., Oviedo, F., Buscemi, A. M., Layurova, M., Chen, D. X., Ogunfunmi, T., Thapa, J., Ramasamy, S., Settens, C., DeCost, B. L., Kusne, A. G., Liu, Z., Tian, S. I. P., Peters, I. M., Correa-Baena, J.-P., & Buonassisi, T. (2019). Accelerated development of perovskite-inspired materials via high-throughput synthesis and machine-learning diagnosis. Joule, 3, 1437.

    Article  CAS  Google Scholar 

  36. Gu, E., Tang, X., Langner, S., Duchstein, P., Zhao, Y., Levchuk, I., Kalancha, V., Stubhan, T., Hauch, J., Egelhaaf, H. J., Zahn, D., Osvet, A., & Brabec, C. J. (2020). Robot-based high-throughput screening of antisolvents for lead halide perovskites. Joule, 4, 1806.

    Article  CAS  Google Scholar 

  37. Ishihara, H., Sarang, S., Chen, Y.-C., Lin, O., Phummirat, P., Thung, L., Hernandez, J., Ghosh, S., & Tung, V. (2016). Nature inspiring processing route toward high throughput production of perovskite photovoltaics. Journal of Materials Chemistry A, 4, 6989.

    Article  CAS  Google Scholar 

  38. Baker, J., Hooper, K., Meroni, S., Pockett, A., McGettrick, J., Wei, Z., Escalante, R., Oskam, G., Carnie, M., & Watson, T. (2017). High throughput fabrication of mesoporous carbon perovskite solar cells. Journal of Materials Chemistry A, 5, 18643.

    Article  CAS  Google Scholar 

  39. Chen, S., Zhang, L., Yan, L., Xiang, X., Zhao, X., Yang, S., & Xu, B. (2019). Accelerating the screening of perovskite compositions for photovoltaic applications through high-throughput inkjet printing. Advanced Functional Materials, 29, 1905487.

    Article  CAS  Google Scholar 

  40. Jeong, D.-N., Lee, D.-K., Seo, S., Lim, S. Y., Zhang, Y., Shin, H., Cheong, H., & Park, N.-G. (2019). Perovskite cluster-containing solution for scalable D-Bar coating toward high-throughput perovskite solar cells. ACS Energy Letters, 4, 1189.

    Article  CAS  Google Scholar 

  41. Li, J., Du, P., Li, S., Liu, J., Zhu, M., Tan, Z., Hu, M., Luo, J., Guo, D., Ma, L., Nie, Z., Ma, Y., Gao, L., Niu, G., & Tang, J. (2019). High-throughput combinatorial optimizations of perovskite light-emitting diodes based on all-vacuum deposition. Advanced Functional Materials, 29, 1903607.

    Article  CAS  Google Scholar 

  42. Dahl, J. C., Wang, X., Huang, X., Chan, E. M., & Alivisatos, A. P. (2020). Elucidating the weakly reversible Cs-Pb-Br perovskite nanocrystal reaction network with high-throughput maps and transformations. Journal of the American Chemical Society, 142, 11915.

    Article  CAS  Google Scholar 

  43. Li, Z., Najeeb, M. A., Alves, L., Sherman, A. Z., Shekar, V., Cruz Parrilla, P., Pendleton, I. M., Wang, W., Nega, P. W., Zeller, M., Schrier, J., Norquist, A. J., & Chan, E. M. (2020). Robot-accelerated perovskite investigation and discovery. Chemistry of Materials, 13, 5650–5663.

    Article  CAS  Google Scholar 

  44. Reinhardt, E., Salaheldin, A. M., Distaso, M., Segets, D., & Peukert, W. (2020). Rapid characterization and parameter space exploration of perovskites using an automated routine. ACS Combinatorial Science, 22, 6.

    Article  CAS  Google Scholar 

  45. Surmiak, M. A., Zhang, T., Lu, J., Rietwyk, K. J., Raga, S. R., McMeekin, D. P., & Bach, U. (2020). High-throughput characterization of perovskite solar cells for rapid combinatorial screening. Solar RRL, 4, 2000097.

    Article  CAS  Google Scholar 

  46. Chen, S., Hou, Y., Chen, H., Tang, X., Langner, S., Li, N., Stubhan, T., Levchuk, I., Gu, E., Osvet, A., & Brabec, C. J. (2018). Exploring the stability of novel wide bandgap perovskites by a robot based high throughput approach. Advanced Energy Materials, 8, 1701543. https://doi.org/10.1002/aenm.201701543.

    Article  CAS  Google Scholar 

  47. The HybriD3 materials database. Retrieved from https://materials.hybrid3.duke.edu/.

  48. Perovskite Solar Cells DB. Retrieved from http://www.perovskite.info/perovskite/perovSearch.

  49. The Computational Material Repository. Retrieved from https://cmr.fysik.dtu.dk/#.

  50. Marchenko, E. I., Fateev, S. A., Petrov, A. A., Korolev, V. V., Mitrofanov, A., Petrov, A. V., Goodilin, E. A., & Tarasov, A. B. (2020). Database of two-dimensional hybrid perovskite materials: open-access collection of crystal structures, band gaps, and atomic partial charges predicted by machine learning. Chemistry of Materials, 32(17), 7383–7388.

    Article  CAS  Google Scholar 

  51. Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. A. (2013). Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1, 011002.

    Article  CAS  Google Scholar 

  52. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B., & Wolverton, C. (2013). Materials design and discovery with high-throughput density functional theory: The Open Quantum Materials Database (OQMD). JOM, 65, 1501.

    Article  CAS  Google Scholar 

  53. Atomly. Retrieved from https://atomly.net/.

  54. Pilania, G., Balachandran, P. V., Gubernatis, J. E., & Lookman, T. (2020). Data-based methods for materials design and discovery: Basic ideas and general methods (Vol. 1, p. 1). San Rafael, CA: Morgan & Claypool Publishers.

    Book  Google Scholar 

  55. Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A., & Kim, C. (2017). Machine learning in materials informatics: Recent applications and prospects. NPJ Computational Materials, 3, 54.

    Article  Google Scholar 

  56. Mueller, T., Kusne, A. G., & Ramprasad, R. (2016). Machine learning in materials science. In A. L. Parrill & K. B. Lipkowitz (Eds.), Reviews in computational chemistry (p. 186). Hoboken, NJ: Wiley.

    Google Scholar 

  57. Muratov, E. N., Bajorath, J., Sheridan, R. P., Tetko, I. V., Filimonov, D., Poroikov, V., Oprea, T. I., Baskin, I. I., Varnek, A., Roitberg, A., Isayev, O., Curtarolo, S., Fourches, D., Cohen, Y., Aspuru-Guzik, A., Winkler, D. A., Agrafiotis, D., Cherkasov, A., & Tropsha, A. (2020). QSAR without borders. Chemical Society Reviews, 49, 3525.

    Article  CAS  Google Scholar 

  58. Seko, A., Togo, A., & Tanaka, I. (2018). Descriptors for machine learning of materials data. In Nanoinformatics (p. 3). Singapore: Springer.

    Chapter  Google Scholar 

  59. Bartók, A. P., Kondor, R., & Csányi, G. (2013). On representing chemical environments. Physical Review B, 87, 184115.

    Article  CAS  Google Scholar 

  60. Filip, M. R., & Giustino, F. (2018). The geometric blueprint of perovskites. Proceedings of the National Academy of Sciences of the United States of America, 115, 5397.

    Article  CAS  Google Scholar 

  61. Ouyang, R., Curtarolo, S., Ahmetcik, E., Scheffler, M., & Ghiringhelli, L. M. (2018). SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Physical Review Materials, 2, 083802.

    Article  CAS  Google Scholar 

  62. Goldschmidt, V. M. (1926). Die gesetze der krystallochemie. Naturwissenschaften, 14, 477.

    Article  CAS  Google Scholar 

  63. Li, C., Soh, K. C. K., & Wu, P. (2004). Formability of ABO3 perovskites. Journal of Alloys and Compounds, 372, 40.

    Article  CAS  Google Scholar 

  64. Li, C., Lu, X., Ding, W., Feng, L., Gao, Y., & Guo, Z. (2008). Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallographica. Section B, 64, 702.

    Article  CAS  Google Scholar 

  65. Kieslich, G., Sun, S., & Cheetham, A. K. (2015). An extended Tolerance Factor approach for organic-inorganic perovskites. Chemical Science, 6, 3430.

    Article  CAS  Google Scholar 

  66. Sun, Q., & Yin, W. J. (2017). Thermodynamic stability trend of cubic perovskites. Journal of the American Chemical Society, 139, 14905.

    Article  CAS  Google Scholar 

  67. Zhou, Q., Lu, S., Wu, Y., & Wang, J. (2020). Property-oriented material design based on a data-driven machine learning technique. Journal of Physical Chemistry Letters, 11, 3920.

    Article  CAS  Google Scholar 

  68. Balachandran, P. V., Xue, D., Theiler, J., Hogden, J., Gubernatis, J. E., & Lookman, T. (2018). Importance of feature selection in machine learning and adaptive design for materials. In Materials discovery and design (p. 59). Cham: Springer.

    Google Scholar 

  69. Lu, S. H., Zhou, Q. H., Ouyang, Y. X., Guo, Y. L., Li, Q., & Wang, J. L. (2018). Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nature Communications, 9, 3405.

    Article  CAS  Google Scholar 

  70. Lu, S., Zhou, Q., Ma, L., Guo, Y., & Wang, J. (2019). Rapid discovery of ferroelectric photovoltaic perovskites and material descriptors via machine learning. Small Methods. https://doi.org/10.1002/smtd.201900360.

  71. Ziletti, A., Kumar, D., Scheffler, M., & Ghiringhelli, L. M. (2018). Insightful classification of crystal structures using deep learning. Nature Communications, 9, 2775.

    Article  CAS  Google Scholar 

  72. Balachandran, P. V., Emery, A. A., Gubernatis, J. E., Lookman, T., Wolverton, C., & Zunger, A. (2018). Predictions of new ABO(3) perovskite compounds by combining machine learning and density functional theory. Physical Review Materials, 2, 043802.

    Article  CAS  Google Scholar 

  73. Ye, W., Chen, C., Wang, Z., Chu, I.-H., & Ong, S. P. (2018). Deep neural networks for accurate predictions of crystal stability. Nature Communications, 9, 3800.

    Article  CAS  Google Scholar 

  74. Im, J., Lee, S., Ko, T. W., Kim, H. W., Hyon, Y., & Chang, H. (2019). Identifying Pb-free perovskites for solar cells by machine learning. NPJ Computational Materials, 5, 37.

    Article  CAS  Google Scholar 

  75. Pilania, G., Balachandran, P. V., Gubernatis, J. E., & Lookman, T. (2015). Classification of ABO3 perovskite solids: A machine learning study. Acta Crystallographica B Structural Science, Crystal Engineering and Material, 71, 507.

    Article  CAS  Google Scholar 

  76. Pilania, G., Balachandran, P. V., Kim, C., & Lookman, T. (2016). Finding new perovskite halides via machine learning. Frontiers in Materials, 3, 19.

    Article  Google Scholar 

  77. Li, W., Jacobs, R., & Morgan, D. (2018). Predicting the thermodynamic stability of perovskite oxides using machine learning models. Computational Materials Science, 150, 454.

    Article  CAS  Google Scholar 

  78. Xu, Q., Li, Z., Liu, M., & Yin, W. J. (2018). Rationalizing perovskite data for machine learning and materials design. Journal of Physical Chemistry Letters, 9, 6948.

    Article  CAS  Google Scholar 

  79. Schmidt, J., Shi, J., Borlido, P., Chen, L., Botti, S., & Marques, M. A. L. (2017). Predicting the thermodynamic stability of solids combining density functional theory and machine learning. Chemistry of Materials, 29, 5090.

    Article  CAS  Google Scholar 

  80. Yang, S., Wang, Y., Liu, P., Cheng, Y.-B., Zhao, H. J., & Yang, H. G. (2016). Functionalization of perovskite thin films with moisture-tolerant molecules. Nature Energy, 1, 15016.

    Article  CAS  Google Scholar 

  81. Li, Z., Xu, Q., Sun, Q., Hou, Z., & Yin, W.-J. (2019). Thermodynamic stability landscape of halide double perovskites via high-throughput computing and machine learning. Advanced Functional Materials, 29, 1807280.

    Article  CAS  Google Scholar 

  82. Mazaheri, T., Sun, B., Scher-Zagier, J., Thind, A. S., Magee, D., Ronhovde, P., Lookman, T., Mishra, R., & Nussinov, Z. (2019). Stochastic replica voting machine prediction of stable cubic and double perovskite materials and binary alloys. Physical Review Materials, 3, 063802.

    Article  CAS  Google Scholar 

  83. Ali, A., Park, H., Mall, R., Aissa, B., Sanvito, S., Bensmail, H., Belaidi, A., & El-Mellouhi, F. (2020). Machine learning accelerated recovery of the cubic structure in mixed-cation perovskite thin films. Chemistry of Materials, 32, 2998.

    Article  CAS  Google Scholar 

  84. Zhang, H., Ren, X., Chen, X., Mao, J., Cheng, J., Zhao, Y., Liu, Y., Milic, J., Yin, W.-J., Grätzel, M., & Choy, W. C. H. (2018). Improving the stability and performance of perovskite solar cells via off-the-shelf post-device ligand treatment. Energy & Environmental Science, 11, 2253.

    Article  CAS  Google Scholar 

  85. Kirman, J., Johnston, A., Kuntz, D. A., Askerka, M., Gao, Y., Todorovic, P., Ma, D., Prive, G. G., & Sargent, E. H. (2020). Machine-learning-accelerated perovskite crystallization. Matter, 2, 938.

    Article  Google Scholar 

  86. Yu, Y., Tan, X., Ning, S., & Wu, Y. (2019). Machine learning for understanding compatibility of organic–inorganic hybrid perovskites with post-treatment amines. ACS Energy Letters, 4, 397.

    Article  CAS  Google Scholar 

  87. Shockley, W., & Queisser, H. J. (1961). Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 32, 510.

    Article  CAS  Google Scholar 

  88. Zhang, L., He, M., & Shao, S. (2020). Machine learning for halide perovskite materials. Nano Energy, 78, 105380.

    Article  CAS  Google Scholar 

  89. Yılmaz, B., & Yıldırım, R. (2021). Critical review of machine learning applications in perovskite solar research. Nano Energy, 80, 105546.

    Article  CAS  Google Scholar 

  90. Takahashi, K., Takahashi, L., Miyazato, I., & Tanaka, Y. (2018). Searching for hidden perovskite materials for photovoltaic systems by combining data science and first principle calculations. ACS Photonics, 5, 771.

    Article  CAS  Google Scholar 

  91. Agiorgousis, L. M., Sun, Y. Y., Choe, D. H., West, D., & Zhang, S. (2019). Machine learning augmented discovery of chalcogenide double perovskites for photovoltaics. Advanced Theory and Simulations. https://doi.org/10.1002/adts.201800173.

  92. Wu, T., & Wang, J. (2019). Global discovery of stable and non-toxic hybrid organic-inorganic perovskites for photovoltaic systems by combining machine learning method with first principle calculations. Nano Energy, 66, 104070.

    Article  CAS  Google Scholar 

  93. Chaube, S., Khullar, P., Srinivasan, S. G., & Rai, B. (2020). A statistical learning framework for accelerated bandgap prediction of inorganic compounds. Journal of Electronic Materials, 49, 752.

    Article  CAS  Google Scholar 

  94. Gladkikh, V., Kim, D. Y., Hajibabaei, A., Jana, A., Myung, C. W., & Kim, K. S. (2020). Machine learning for predicting the band gaps of ABX(3) perovskites from elemental properties. Journal of Physical Chemistry C, 124, 8905.

    Article  CAS  Google Scholar 

  95. Jao, M. H., Chan, S. H., Wu, M. C., & Lai, C. S. (2020). Element code from pseudopotential as efficient descriptors for a machine learning model to explore potential lead-free halide perovskites. Journal of Physical Chemistry Letters, 11, 8914.

    Article  CAS  Google Scholar 

  96. Park, H., Mall, R., Ali, A., Sanvito, S., Bensmail, H., & El-Mellouhi, F. (2020). Importance of structural deformation features in the prediction of hybrid perovskite bandgaps. Computational Materials Science, 184, 109858.

    Article  CAS  Google Scholar 

  97. Saidi, W. A., Shadid, W., & Castelli, I. E. (2020). Machine-learning structural and electronic properties of metal halide perovskites using a hierarchical convolutional neural network. NPJ Computational Materials, 6, 36.

    Article  CAS  Google Scholar 

  98. Pilania, G., Mannodi-Kanakkithodi, A., Uberuaga, B. P., Ramprasad, R., Gubernatis, J. E., & Lookman, T. (2016). Machine learning bandgaps of double perovskites. Scientific Reports, 6, 19375.

    Article  CAS  Google Scholar 

  99. Pilania, G., Gubernatis, J. E., & Lookman, T. (2017). Multi-fidelity machine learning models for accurate bandgap predictions of solids. Computational Materials Science, 129, 156.

    Article  CAS  Google Scholar 

  100. Li, W., Wang, Z., Deschler, F., Gao, S., Friend, R. H., & Cheetham, A. K. (2017). Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nature Reviews Materials, 2, 16099.

    Article  Google Scholar 

  101. Zhang, X., Li, L., Sun, Z., & Luo, J. (2019). Rational chemical doping of metal halide perovskites. Chemical Society Reviews, 48, 517.

    Article  CAS  Google Scholar 

  102. Choubisa, H., Askerka, M., Ryczko, K., Voznyy, O., Mills, K., Tamblyn, I., & Sargent, E. H. (2020). Crystal site feature embedding enables exploration of large chemical spaces. Matter, 3, 433–448.

    Article  Google Scholar 

  103. Li, J., Pradhan, B., Gaur, S., & Thomas, J. (2019). Predictions and strategies learned from machine learning to develop high-performing perovskite solar cells. Advanced Energy Materials, 9, 16099.

    Google Scholar 

  104. Odabasi, C., & Yildirim, R. (2019). Performance analysis of perovskite solar cells in 2013–2018 using machine-learning tools. Nano Energy, 56, 770.

    Article  CAS  Google Scholar 

  105. Milkinson, M., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J. & Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data, 3, 160018.

    Google Scholar 

  106. Lundberg, S. M., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., & Lee, S. I. (2020). From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67.

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Key Research and Development Program of China (2017YFA0204800), Natural Science Foundation of China (21525311, 21773027, 22033002), the National Natural Science Foundation of Jiangsu (BK20180353), the Fundamental Research Funds for the Central Universities of China, and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX20_0075) in China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Gang Ju or Jinlan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, S., Wu, Y., Ju, MG., Wang, J. (2021). Machine Learning Accelerated Insights of Perovskite Materials. In: Cheng, Y., Wang, T., Zhang, G. (eds) Artificial Intelligence for Materials Science. Springer Series in Materials Science, vol 312. Springer, Cham. https://doi.org/10.1007/978-3-030-68310-8_8

Download citation

Publish with us

Policies and ethics