Skip to main content

Thermal Nanostructure Design by Materials Informatics

  • Chapter
  • First Online:
Artificial Intelligence for Materials Science

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 312))

Abstract

Tuning thermal transport by nanostructures has garnered increasing attentions as thermal materials with either high or low thermal conductivities are of great use in a wide range of applications like thermal management, thermal barriers, and thermoelectrics. Due to the superhigh degree of freedoms in terms of atom types and structural configurations, traditional searching algorithm may be powerless to find the optimal nanostructures with limited time and computation expenses, and thus the big-data-driven materials informatics (MI), as the fourth paradigm, has emerged and become prevalent. In this chapter, beginning with the brief introduction of the MI algorithms, we emphasize on the progress on MI-based thermal nanostructure designs, ranging from heat conduction through Si/Ge and GaAs/AlAs superlattices, graphene nanoribbons, to thermal emission for radiative cooling, ultranarrow emission, thermophotovoltaic system, and thermal camouflage. The remaining challenges and opportunities in this field are outlined and prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, Y., Niu, C., Wang, Z., Gan, Y., Zhu, Y., Sun, S., & Shen, T. (2020). Machine learning in materials genome initiative: A review. Journal of Materials Science & Technology, 57, 113–122.

    Article  Google Scholar 

  2. Ju, S., & Shiomi, J. (2019). Materials informatics for heat transfer: Recent progresses and perspectives. Nanoscale and Microscale Thermophysical Engineering, 23(2), 157–172.

    Article  CAS  Google Scholar 

  3. Kim, H., Han, J., & Han, T. Y. (2020). Machine vision-driven automatic recognition of particle size and morphology in SEM images. Nanoscale, 12, 19461.

    Article  CAS  Google Scholar 

  4. Chen, Y., Tian, Y., Zhou, Y., Fang, D., Ding, X., Sun, J., & Xue, D. (2020). Machine learning assisted multi-objective optimization for materials processing parameters: A case study in Mg alloy. Journal of Alloys and Compounds, 844, 156159.

    Article  CAS  Google Scholar 

  5. Yamashita, T., Sato, N., Kino, H., Miyake, T., Tsuda, K., & Oguchi, T. (2018). Crystal structure prediction accelerated by Bayesian optimization. Physical Review Materials, 2, 013803.

    Article  Google Scholar 

  6. Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. A. (2013). Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Materials, 1, 011002.

    Article  CAS  Google Scholar 

  7. Curtarolo, S., Setyawan, W., Wang, S., Xue, J., Yang, K., Taylor, R. H., Nelson, L. J., Hart, G. L. W., Sanvito, S., Buongiorno-Nardelli, M., Mingo, N., & Levy, O. (2012). Aflowlib.Org: A distributed materials properties repository from high-throughput ab initio calculations. Computational Materials Science, 58, 227–235.

    Article  CAS  Google Scholar 

  8. Belsky, A., Hellenbrandt, M., Karen, V. L., & Luksch, P. (2002). New developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in support of materials research and design. Acta Crystallographica Section B, 58, 364.

    Article  CAS  Google Scholar 

  9. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B., & Wolverton, C. (2013). Materials design and discovery with high-throughput density functional theory: The open quantum materials database (oqmd). JOM, 65(11), 1501–1509.

    Article  CAS  Google Scholar 

  10. Xu, Y., Yamazaki, M., & Villars, P. (2011). Inorganic materials database for exploring the nature of material. Japanese Journal of Applied Physics, 50(11), 11RH02.

    Article  Google Scholar 

  11. Liu, Y., Hu, C., Huang, J., Sumpter, B. G., & Qiao, R. (2015). Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects. The Journal of Chemical Physics, 142, 244703.

    Article  CAS  Google Scholar 

  12. Merabia, S., & Termentzidis, K. (2014). Thermal boundary conductance across rough interfaces probed by molecular dynamics. Physical Review B, 89(5), 054309.

    Article  CAS  Google Scholar 

  13. Tian, Z., Esfarjani, K., & Chen, G. (2012). Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green’s function method. Physical Review B, 86(23), 235304.

    Article  CAS  Google Scholar 

  14. Sakata, M., Hori, T., Oyake, T., Maire, J., Nomura, M., & Shiomi, J. (2015). Tuning thermal conductance across sintered silicon interface by local nanostructures. Nano Energy, 13, 601–608.

    Article  CAS  Google Scholar 

  15. Sakata, M., Oyake, T., Maire, J., Nomura, M., Higurashi, E., & Shiom, J. (2015). Thermal conductance of silicon interfaces directly bonded by room-temperature surface activation. Applied Physics Letters, 106, 081603.

    Article  CAS  Google Scholar 

  16. Agrawala, A., & Choudhary, A. (2016). Perspective: Materials informatics and big data: Realization of the “fourth paradigm”of science in materials science. APL Materials, 4, 053208.

    Article  CAS  Google Scholar 

  17. Rajan, K. (2012). Materials informatics. Materials Today, 15(11), 470.

    Article  Google Scholar 

  18. Rajan, K. (2015). Materials informatics: The materials “gene” and big data. Annual Review of Materials Research, 45(1), 153–169.

    Article  CAS  Google Scholar 

  19. Mueller, T., Hautier, G., Jain, A., & Ceder, G. (2011). Evaluation of tavorite-structured cathode materials for lithium-ion batteries using high-throughput computing. Chemistry of Materials, 23(17), 3854–3862.

    Article  CAS  Google Scholar 

  20. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. B., & Norskov, J. K. (2006). Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials, 5(11), 909–913.

    Article  CAS  Google Scholar 

  21. Blundell, T. L., Sibanda, B. L., Montalvao, R. W., Brewerton, S., Chelliah, V., Worth, C. L., Harmer, N. J., Davies, O., & Burke, D. (2006). Structural biology and bioinformatics in drug design: Opportunities and challenges for target identification and lead discovery. Philosophical Transactions of Royal Society: Biological Sciences, 361(1467), 413–423.

    Article  CAS  Google Scholar 

  22. Wu, Y., Lazic, P., Hautier, G., Persson, K., & Ceder, G. (2013). First principles high throughput screening of oxynitrides for water-splitting photocatalysts. Energy & Environmental Science, 6(1), 157–168.

    Article  CAS  Google Scholar 

  23. Rahimi, A., & Recht, B. (2007). Advances in neural information processing systems 20 (p. 1177). Vancouver, BC: NIPS.

    Google Scholar 

  24. Ueno, T., Rhone, T. D., Hou, Z., Mizoguchi, T., & Tsuda, K. (2016). Combo: An efficient Bayesian optimization library for materials science. Materials Discovery, 4, 18–21.

    Article  Google Scholar 

  25. Dieb, T. M., Ju, S., Yoshizoe, K., Hou, Z., Shiomi, J., & Tsuda, K. (2017). MDTS: Automatic complex materials design using Monte Carlo tree search. Science and Technology of Advanced Materials, 18(1), 498–503.

    Article  Google Scholar 

  26. Dieb, T. M., Ju, S., Shiomi, J., & Tsuda, K. (2019). Monte Carlo tree search for materials design and discovery. MRS Communications, 9(02), 532–536.

    Article  CAS  Google Scholar 

  27. Yamada, H., Liu, C., Wu, S., Koyama, Y., Ju, S., Shiomi, J., Morikawa, J., & Yoshida, R. (2019). Predicting materials properties with little data using shotgun transfer learning. ACS Central Science, 5(10), 1717–1730.

    Article  CAS  Google Scholar 

  28. Ju, S., Shiga, T., Feng, L., Hou, Z., Tsuda, K., & Shiomi, J. (2017). Designing nanostructures for phonon transport via Bayesian optimization. Physical Review X, 7(2), 021024.

    Article  Google Scholar 

  29. Hopkins, P. E., Norris, P. M., Tsegaye, M. S., & Ghosh, A. W. (2009). Extracting phonon thermal conductance across atomic junctions: Nonequilibrium Green’s function approach compared to semiclassical methods. Journal of Applied Physics, 106, 063503.

    Article  CAS  Google Scholar 

  30. Hyldgaard, P. (2004). Resonant thermal transport in semiconductor barrier structures. Physical Review B, 69(19), 193305.

    Article  CAS  Google Scholar 

  31. Hu, R., Iwamoto, S., Feng, L., Ju, S., Hu, S., Ohnishi, M., Nagai, N., Hirakawa, K., & Shiomi, J. (2020). Machine-learning-optimized aperiodic superlattice minimizes coherent phonon heat conduction. Physical Review X, 10(2), 021050.

    Article  CAS  Google Scholar 

  32. Yamawaki, M., Ohnishi, M., Ju, S., & Shiomi, J. (2018). Multifunctional structural design of graphene thermoelectrics by Bayesian optimization. Science Advances, 4, eaar4192.

    Article  CAS  Google Scholar 

  33. Kalhor, N., Boden, S. A., & Mizuta, H. (2014). Sub-10nm patterning by focused He-ion beam milling for fabrication of downscaled graphene nano devices. Microelectronic Engineering, 114, 70–77.

    Article  CAS  Google Scholar 

  34. Ito, M., Koizumi, T., Kojima, H., Saito, T., & Nakamura, M. (2017). From materials to device design of a thermoelectric fabric for wearable energy harvesters. Journal of Materials Chemistry A, 5(24), 12068–12072.

    Article  CAS  Google Scholar 

  35. Chakraborty, P., Liu, Y., Ma, T., Guo, X., Cao, L., Hu, R., & Wang, Y. (2020). Quenching thermal transport in aperiodic superlattices: A molecular dynamics and machine learning study. ACS Applied Materials & Interfaces, 12(7), 8795–8804.

    Article  CAS  Google Scholar 

  36. Shih, Y. C. A., Sadra, K., & Streetman, B. (1994). Random-period superlattice quantum wells. Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures, 12, 1082–1085.

    Article  CAS  Google Scholar 

  37. Juntunen, T., Vänskä, O., & Tittonen, I. (2019). Anderson localization quenches thermal transport in aperiodic superlattices. Physical Review Letters, 122, 105901.

    Article  CAS  Google Scholar 

  38. Haykin, S. (1994). Neural networks: A comprehensive foundation (1st ed.). Upper Saddle River, NJ: Prentice Hall PTR.

    Google Scholar 

  39. Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017). In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neural information processing systems 30 (pp. 971–980). Montreal: Curran Associates.

    Google Scholar 

  40. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

    Google Scholar 

  41. Wang, Y., Vallabhaneni, A., Hu, J., Qiu, B., Chen, Y. P., & Ruan, X. (2014). Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. Nano Letters, 14, 592–596.

    Article  CAS  Google Scholar 

  42. Luckyanova, M. N., Mendoza, J., Lu, H., Song, B., Huang, S., Zhou, J., Li, M., Dong, Y., Zhou, H., Garlow, J., Wu, L., Kirby, B. J., Grutter, A. J., Puretzky, A. A., Zhu, Y., Dresselhaus, M. S., Gossard, A., & Chen, G. (2018). Phonon localization in heat conduction. Science Advances, 4, eaat9460.

    Article  CAS  Google Scholar 

  43. Mendoza, J., & Chen, G. (2016). Anderson localization of thermal phonons leads to a thermal conductivity maximum. Nano Letters, 16, 7616–7620.

    Article  CAS  Google Scholar 

  44. Tian, Z. (2019). Anderson localization for better thermoelectrics? ACS Nano, 13, 3750–3753.

    Article  CAS  Google Scholar 

  45. Zhu, L., Raman, A., Wang, K. X., Anoma, M. A., & Fan, S. (2014). Radiative cooling of solar cells. Optica, 1(1), 32.

    Article  CAS  Google Scholar 

  46. Lu, Y., Chen, Z., Ai, L., Zhang, X., Zhang, J., Li, J., Wang, W., Tan, R., Dai, N., & Song, W. (2017). A universal route to realize radiative cooling and light management in photovoltaic modules. Solar RRL, 1(10), 1700084.

    Article  CAS  Google Scholar 

  47. Mandal, J., Fu, Y., Overvig, A. C., Jia, M., Sun, K., Shi, N. N., Zhou, H., Xiao, X., Yu, N., & Yang, Y. (2018). Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science, 362, 315.

    Article  CAS  Google Scholar 

  48. Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E., & Fan, S. (2014). Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 515(7528), 540–544.

    Article  CAS  Google Scholar 

  49. Guo, J., Ju, S., & Shiomi, J. (2020). Design of a highly selective radiative cooling structure accelerated by materials informatics. Optics Letters, 45(2), 343.

    Article  CAS  Google Scholar 

  50. Wang, L. P., & Zhang, Z. M. (2011). Phonon-mediated magnetic polaritons in the infrared region. Optics Express, 19, A126.

    Article  CAS  Google Scholar 

  51. Kitai, K., Guo, J., Ju, S., Tanaka, S., Tsuda, K., Shiomi, J., & Tamura, R. (2020). Designing metamaterials with quantum annealing and factorization machines. Physical Review Research, 2(1), 013319.

    Article  CAS  Google Scholar 

  52. Ilic, O., Bermel, P., Chen, G., Joannopoulos, J. D., Celanovic, I., & Soljacic, M. (2016). Tailoring high-temperature radiation and the resurrection of the incandescent source. Nature Nanotechnology, 11(4), 320–324.

    Article  CAS  Google Scholar 

  53. Liu, X. L., Wang, L. P., & Zhang, Z. M. (2013). Wideband tunable omnidirectional infrared absorbers based on doped-silicon nanowire arrays. Journal of Heat Transfer, 135(6), 061602.

    Article  Google Scholar 

  54. Landy, N. I., Bingham, C. M., Tyler, T., Jokerst, N., Smith, D. R., & Padilla, W. J. (2009). Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B, 79(12), 125104.

    Article  CAS  Google Scholar 

  55. Bermel, P., Ghebrebrhan, M., Chan, W., Yeng, Y. X., Araghchini, M., Hamam, R., Marton, C. H., Jensen, K. F., Soljacic, M., Joannopoulos, J. D., Johnson, S. G., & Celanovic, I. (2010). Design and global optimization of high-efficiency thermophotovoltaic systems. Optics Express, 18, A314.

    Article  Google Scholar 

  56. Wang, H., Alshehri, H., Su, H., & Wang, L. (2018). Design, fabrication and optical characterizations of large-area lithography-free ultrathin multilayer selective solar coatings with excellent thermal stability in air. Solar Energy Materials and Solar Cells, 174, 445–452.

    Article  CAS  Google Scholar 

  57. Yeng, Y. X., Chou, J. B., Rinnerbauer, V., Shen, Y., Kim, S. G., Joannopoulos, J. D., Soljacic, M., & Celanovic, I. (2014). Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals. Optics Express, 22(18), 21711–21718.

    Article  CAS  Google Scholar 

  58. Aydin, K., Ferry, V. E., Briggs, R. M., & Atwater, H. A. (2011). Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications, 2, 517.

    Article  CAS  Google Scholar 

  59. Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. (2008). Perfect metamaterial absorber. Physical Review Letters, 100(20), 207402.

    Article  CAS  Google Scholar 

  60. Sakurai, A., Yada, K., Simomura, T., Ju, S., Kashiwagi, M., Okada, H., Nagao, T., Tsuda, K., & Shiomi, J. (2019). Ultranarrow-band wavelength-selective thermal emission with aperiodic multilayered metamaterials designed by Bayesian optimization. ACS Central Science, 5(2), 319–326.

    Article  CAS  Google Scholar 

  61. Joannopoulos, J. D., Villeneuve, P. R., & Fan, S. (1997). Photonic crystals: Putting a new twist on light. Nature, 386, 143.

    Article  CAS  Google Scholar 

  62. Datas, A., & Algora, C. (2013). Global optimization of solar thermophotovoltaic systems. Progress in Photovoltaics Research & Applications, 21, 1040–1055.

    Google Scholar 

  63. Hu, R., Song, J., Liu, Y., Xi, W., Zhao, Y., Yu, X., Cheng, Q., Tao, G., & Luo, X. (2020). Machine learning-optimized Tamm emitter for high-performance thermophotovoltaic system with detailed balance analysis. Nano Energy, 72, 104687.

    Article  CAS  Google Scholar 

  64. Kresse, G., & Furthmuller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 15.

    Article  CAS  Google Scholar 

  65. Kresse, G., & Furthmuller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169.

    Article  CAS  Google Scholar 

  66. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., De Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., & Wentzcovitch, R. M. (2009). Quantum espresso: A modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502.

    Google Scholar 

  67. Tadano, T., Gohda, Y., & Tsuneyuki, S. (2014). Anharmonic force constants extracted from first-principles molecular dynamics: Applications to heat transfer simulations. Journal of Physics: Condensed Matter, 26(22), 225402.

    CAS  Google Scholar 

  68. Togo, A., Chaput, L., & Tanaka, I. (2015). Distributions of phonon lifetimes in Brillouin zones. Physical Review B, 91(9), 094306.

    Article  CAS  Google Scholar 

  69. Li, W., Carrete, J., Katcho, A. N., & Mingo, N. (2014). Shengbte: A solver of the Boltzmann transport equation for phonons. Computer Physics Communications, 185(6), 1747–1758.

    Article  CAS  Google Scholar 

  70. Han, T. C., Bai, X., Thong, J. T. L., Li, B. W., & Qiu, C. W. (2014). Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterial. Advanced Materials, 26(11), 1731–1734.

    Article  CAS  Google Scholar 

  71. Narayana, S., & Sato, Y. (2012). Heat flux manipulation with engineered thermal materials. Physical Review Letters, 108(21), 214303.

    Article  CAS  Google Scholar 

  72. Hu, R., Huang, S., Wang, M., Luo, X. B., Shiomi, J., & Qiu, C. W. (2019). Encrypted thermal printing with regionalization transformation. Advanced Materials, 31(25), 1807849.

    Article  CAS  Google Scholar 

  73. Song, J., Huang, S., Ma, Y., Cheng, Q., Hu, R., & Luo, X. (2020). Radiative metasurface for thermal camouflage, illusion and messaging. Optics Express, 28(2), 875–885.

    Article  CAS  Google Scholar 

  74. Zhang, Z. M. (2007). Nano/microscale heat transfer. New York: McGraw-Hill.

    Google Scholar 

  75. Shen, Z., Zhou, S., & Ge, S. (2019). Liquid crystal enabled dynamic cloaking of terahertz Fano resonators. Applied Physics Letters, 114, 041106.

    Article  CAS  Google Scholar 

  76. Khoo, I. (2009). Nonlinear optics of liquid crystalline materials. Physics Reports, 471, 221–267.

    Article  CAS  Google Scholar 

  77. Chen, P., Ma, L., & Hu, W. (2019). Chirality invertible superstructure mediated active planar optics. Nature Communications, 10, 2518.

    Article  CAS  Google Scholar 

  78. Liu, Y., Song, J., Zhao, W., Ren, X., Cheng, Q., Luo, X., Fang, N. X., & Hu, R. (2020). Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface. Nanophotonics, 9(4), 855–863.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichiro Shiomi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, R., Shiomi, J. (2021). Thermal Nanostructure Design by Materials Informatics. In: Cheng, Y., Wang, T., Zhang, G. (eds) Artificial Intelligence for Materials Science. Springer Series in Materials Science, vol 312. Springer, Cham. https://doi.org/10.1007/978-3-030-68310-8_7

Download citation

Publish with us

Policies and ethics