Skip to main content

Machine Learning Interatomic Force Fields for Carbon Allotropic Materials

  • Chapter
  • First Online:
Artificial Intelligence for Materials Science

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 312))

Abstract

Recently, the machine learning (ML) atomic force field has emerged as a powerful atomic simulation approach because of its high accuracy, low computational cost, and transferability. In this mini review, we first summarize the disadvantages of traditional force field and the unique advantages of ML-based force field for molecular dynamics simulations. Then the basic workflow to develop the ML atomic force field is discussed in each step. Furthermore, taking carbon material as a typical example, the various applications of ML-based force fields for studying the carbon allotropic materials are reviewed. Finally, the perspectives are discussed and future directions for studying atomic force field by ML are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tang, Y., Zhang, D., et al. (2018). An atomistic fingerprint algorithm for learning ab initio molecular force field. The Journal of Chemical Physics, 148, 034101.

    Article  CAS  Google Scholar 

  2. Berman, D., Sanket, A., Erdemire, A., et al. (2015). Macroscale superlubricity enabled by grapheme anoscroll formation. Science, 14, 126202.

    Google Scholar 

  3. Behler, J. (2017). First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angewandte Chemie, 56, 12828–12840.

    Article  CAS  Google Scholar 

  4. Botu, V., Batra, R., Chapman, J., et al. (2016). Machine learning force fields: construction, validation, and outlook. The Journal of Physical Chemistry C, 121, 511–522.

    Article  CAS  Google Scholar 

  5. Botu, V., & Ramprasad, R. (2015). Adaptive machine learning framework to accelerate ab initio molecular dynamics. International Journal of Quantum Chemistry, 115, 1074–1083.

    Article  CAS  Google Scholar 

  6. Botu, V., & Ramprasad, R. (2015). Learning scheme to predict atomic forces and accelerate materials simulations. Physical Review B, 92, 094306.

    Article  CAS  Google Scholar 

  7. Chan, H., Narayanan, B., Cherukara, M. J., et al. (2019). Machine learning classical interatomic potentials for molecular dynamics from first-principles training data. The Journal of Physical Chemistry C, 123, 6941–6957.

    Article  CAS  Google Scholar 

  8. Elliott, J. A. (2013). Novel approaches to multiscale modelling in materials science. International Materials Reviews, 56, 207–225.

    Article  CAS  Google Scholar 

  9. Erdemir, A., Ramirez, G., Eryilmaz, O. L., et al. (2016). Carbon-based tribofilms from lubricating oils. Nature, 536, 67–71.

    Article  CAS  Google Scholar 

  10. Gomez-Bombarelli, R., Aguilera-Iparraguirre, J., Hirzel, T. D., et al. (2016). Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nature Materials, 15, 1120–1127.

    Article  CAS  Google Scholar 

  11. Hautier, G., Jain, A., & Ong, S. P. (2012). From the computer to the laboratory: materials discovery and design using first-principles calculations. Journal of Materials Science, 47, 7317–7340.

    Article  CAS  Google Scholar 

  12. Huan, T. D., Batra, R., Chapman, J., et al. (2017). A universal strategy for the creation of machine learning-based atomistic force fields. npj Computational Materials, 3, 37.

    Article  CAS  Google Scholar 

  13. Isayev, O., Oses, C., Toher, C., et al. (2017). Universal fragment descriptors for predicting properties of inorganic crystals. Nature Communications, 8, 15679.

    Article  CAS  Google Scholar 

  14. Jiang, Z., He, J., Deshmukh, S. A., et al. (2015). Subnanometre ligand-shell asymmetry leads to Janus-like nanoparticle membranes. Nature Materials, 14, 912–917.

    Article  CAS  Google Scholar 

  15. Ju, S., Shiga, T., Feng, L., et al. (2017). Designing nanostructures for phonon transport via Bayesian optimization. Physical Review X, 7, 021024.

    Article  Google Scholar 

  16. Neugebauer, J., & Hickel, T. (2013). Density functional theory in materials science. Wiley interdisciplinary reviews. Computational Molecular Science, 3, 438–448.

    Article  CAS  Google Scholar 

  17. Smith, J. S., Nebgen, B. T., Zubatyuk, R., et al. (2019). Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning. Nature Communications, 10, 2903.

    Article  CAS  Google Scholar 

  18. Li, Z., Kermode, J. R., & De Vita, A. (2015). Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Physical Review Letters, 114, 096405.

    Article  CAS  Google Scholar 

  19. Botu, V., Chapman, J., & Ramprasad, R. (2017). A study of adatom ripening on an Al (1 1 1) surface with machine learning force fields. Computational Materials Science, 129, 332–335.

    Article  CAS  Google Scholar 

  20. Kruglov, I., Sergeev, O., Yanilkin, A., et al. (2017). Energy-free machine learning force field for aluminum. Scientific Reports, 7, 8512.

    Article  CAS  Google Scholar 

  21. Suzuki, T., Tamura, R., & Miyazaki, T. (2017). Machine learning for atomic forces in a crystalline solid: transferability to various temperatures. International Journal of Quantum Chemistry, 117, 33–39.

    Article  CAS  Google Scholar 

  22. Li, W., & Ando, Y. (2018). Comparison of different machine learning models for the prediction of forces in copper and silicon dioxide. Physical Chemistry Chemical Physics (PCCP), 20, 30006–30020.

    Article  CAS  Google Scholar 

  23. Artrith, N., & Behler, J. (2012). High-dimensional neural network potentials for metal surfaces: A prototype study for copper. Physical Review B, 85, 045439.

    Article  CAS  Google Scholar 

  24. Artrith, N., & Kolpak, A. M. (2015). Grand canonical molecular dynamics simulations of Cu–Au nanoalloys in thermal equilibrium using reactive ANN potentials. Computational Materials Science, 110, 20–28.

    Article  CAS  Google Scholar 

  25. Artrith, N., & Urban, A. (2016). An implementation of artificial neural-network potentials for atomistic materials simulations: performance for TiO2. Computational Materials Science, 114, 135–150.

    Article  CAS  Google Scholar 

  26. Behler, J., Martonak, R., Donadio, D., et al. (2008). Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential. Physical Review Letters, 100, 185501.

    Article  CAS  Google Scholar 

  27. Eshet, H., Khaliullin, R. Z., Kühne, T. D., et al. (2010). Ab initio quality neural-network potential for sodium. Physical Review B, 81, 184107.

    Article  CAS  Google Scholar 

  28. Artrith, N., Morawietz, T., & Behler, J. (2011). High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide. Physical Review B, 83, 153101.

    Article  CAS  Google Scholar 

  29. Khaliullin, R. Z., Eshet, H., Kühne, T. D., et al. (2010). Graphite-diamond phase coexistence study employing a neural-network mapping of theab initiopotential energy surface. Physical Review B, 81, 100103.

    Article  CAS  Google Scholar 

  30. Kondati Natarajan, S., Morawietz, T., & Behler, J. (2015). Representing the potential-energy surface of protonated water clusters by high-dimensional neural network potentials. Physical Chemistry Chemical Physics (PCCP), 17, 8356–8371.

    Article  CAS  Google Scholar 

  31. Yao, K., Herr, J. E., Toth, D. W., et al. (2018). The TensorMol-0.1 model chemistry: A neural network augmented with long-range physics. Chemical Science, 9, 2261–2269.

    Article  CAS  Google Scholar 

  32. Mi, X. Y., Yu, X., Yao, K. L., et al. (2015). Enhancing the thermoelectric figure of merit by low-dimensional electrical transport in phonon-glass crystals. Nano Letters, 15, 5229–5234.

    Article  CAS  Google Scholar 

  33. Seko, A., Togo, A., Hayashi, H., et al. (2015). Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization. Physical Review Letters, 115, 205901.

    Article  CAS  Google Scholar 

  34. Li, S., Yu, X., Bao, H., et al. (2018). High thermal conductivity of bulk epoxy resin by bottom-up parallel-linking and strain: A molecular dynamics study. The Journal of Physical Chemistry C, 122, 13140–13147.

    Article  CAS  Google Scholar 

  35. Song, Q., An, M., Chen, X., et al. (2016). Adjustable thermal resistor by reversibly folding a graphene sheet. Nanoscale, 8, 14943–14949.

    Article  CAS  Google Scholar 

  36. Yang, H., Zhang, Z., Zhang, J., et al. (2018). Machine learning and artificial neural network prediction of interfacial thermal resistance between graphene and hexagonal boron nitride. Nanoscale, 10, 19092–19099.

    Article  CAS  Google Scholar 

  37. Ma, D., Ding, H., Wang, X., et al. (2017). The unexpected thermal conductivity from graphene disk, carbon nanocone to carbon nanotube. International Journal of Heat and Mass Transfer, 108, 940–944.

    Article  CAS  Google Scholar 

  38. Yu, X., Li, R., Shiga, T., et al. (2019). Hybrid thermal transport characteristics of doped organic semiconductor poly(3,4-ethylenedioxythiophene): Tosylate. The Journal of Physical Chemistry C, 123, 26735–26741.

    Article  CAS  Google Scholar 

  39. Behler, J. (2011). Atom-centered symmetry functions for constructing high-dimensional neural network potentials. The Journal of Chemical Physics, 134, 074106.

    Article  CAS  Google Scholar 

  40. Bartók, A. P., Kondor, R., & Csányi, G. (2017). Erratum: On representing chemical environments. Physical Review B, 96, 019902.

    Article  Google Scholar 

  41. Bartók, A. P., & Csányi, G. (2015). Gaussian approximation potentials: A brief tutorial introduction. International Journal of Quantum Chemistry, 115, 1051–1057.

    Article  CAS  Google Scholar 

  42. Zong, H., Pilania, G., Ding, X., et al. (2018). Developing an interatomic potential for martensitic phase transformations in zirconium by machine learning. npj Computational Materials, 4, 48.

    Article  CAS  Google Scholar 

  43. Fan, J., Sun, Q., Zhou, W.-X., et al. (2018). Principal component analysis for big data. 1–13.

    Google Scholar 

  44. Rowe, P., Csányi, G., Alfè, D., et al. (2018). Development of a machine learning potential for graphene. Physical Review B, 97, 054303.

    Article  Google Scholar 

  45. Wen, M., & Tadmor, E. B. (2019). Hybrid neural network potential for multilayer graphene. Physical Review B, 100, 195419.

    Article  CAS  Google Scholar 

  46. Wen, M., & Tadmor, E. B. (2020). Uncertainty quantification in molecular simulations with dropout neural network potentials. npj Computational Materials, 6, 124.

    Article  Google Scholar 

  47. Deringer, V. L., & Csányi, G. (2017). Machine learning based interatomic potential for amorphous carbon. Physical Review B, 95, 094203.

    Article  Google Scholar 

  48. Rowe, K., Deringer, V. L., & Gasprotto, P. (2020). An accurate and transferable machine learning potential for carbon. Chemical Pysics, 153, 034702.

    CAS  Google Scholar 

  49. Khaliullin, R. Z., Eshet, H., Kuhne, T. D., et al. (2011). Nucleation mechanism for the direct graphite-to-diamond phase transition. Nature Materials, 10, 693–697.

    Article  CAS  Google Scholar 

  50. Bartok, A. P., Payne, M. C., Kondor, R., et al. (2010). Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Physical Review Letters, 104, 136403.

    Article  CAS  Google Scholar 

  51. Behler, J., & Parrinello, M. (2007). Generalized neural-network representation of high-dimensional potential-energy surfaces. Physical Review Letters, 98, 146401.

    Article  CAS  Google Scholar 

  52. Khaliullin, R. Z., Eshet, H., Kühne, T. D., et al. (2010). Graphite-diamond phase coexistence study employing a neural-network mapping of theab initiopotential energy surface. Physical Review B, 81, 100103(R).

    Article  CAS  Google Scholar 

  53. Deringer, V. L., Merlet, C., Hu, Y., et al. (2018). Towards an atomistic understanding of disordered carbon electrode materials. Chemical Communications, 54, 5988–5991.

    Article  CAS  Google Scholar 

  54. Deringer, V. L., Csanyi, G., & Proserpio, D. M. (2017). Extracting crystal chemistry from amorphous carbon structures. Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry, 18, 873–877.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, X., Wang, Q., Zhang, J. (2021). Machine Learning Interatomic Force Fields for Carbon Allotropic Materials. In: Cheng, Y., Wang, T., Zhang, G. (eds) Artificial Intelligence for Materials Science. Springer Series in Materials Science, vol 312. Springer, Cham. https://doi.org/10.1007/978-3-030-68310-8_4

Download citation

Publish with us

Policies and ethics