Skip to main content

Frontal Cortex

  • Chapter
  • First Online:
The Neuropathology of Schizophrenia
  • 742 Accesses

Abstract

Long suggested to be a primary area of disruption in schizophrenia, particularly in relation to the occurrence of psychosis, the frontal lobe has received considerable investigation. As with other regions, investigation into the frontal lobe has been focused on specific regions and found contradicting results. However, the overall pattern of changes from pathological research and imaging studies does suggest a strong trend of grey and white matter loss, particularly in the more dorsal prefrontal and superior and temporal areas. There seems little doubt that the pyramidal layers of frontal lobe structures are the focus of considerable change in schizophrenia, although the precise nature of this requires more focused study to elucidate. More recently, the application of advanced molecular techniques has found key candidates for association in psychosis and schizophrenia as well as cognitive behaviours in general, particularly in the dlPFC and OFC. Many of these schizophrenia-associated loci, SNPs and receptor changes are involved in metabolic regulation, suggesting a possible new direction of schizophrenia research in these regions and showing the importance or further development of molecular biology in conventional neuropathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffmann M. The human frontal lobes and frontal network systems: an evolutionary, clinical, and treatment perspective. ISRN Neurol. 2013;2013:892459.

    PubMed  PubMed Central  Google Scholar 

  2. Teffer K, Semendeferi K. Human prefrontal cortex: evolution, development, and pathology. Prog Brain Res. 2012;195:191–218.

    Article  PubMed  Google Scholar 

  3. Burruss JW, Hurley RA, Taber KH, Rauch RA, Norton RE, Hayman LA. Functional neuroanatomy of the frontal lobe circuits. Radiology. 2000;214(1):227–30.

    Article  CAS  PubMed  Google Scholar 

  4. João R, Filgueiras M. Frontal Lobe: functional neuroanatomy of its circuitry and related disconnection syndromes. 2018; https://doi.org/10.5772/intechopen.79571.

  5. Kritzer MF, Goldman-Rakic PS. Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. J Comp Neurol. 1995;359(1):131–43.

    Article  CAS  PubMed  Google Scholar 

  6. Schoenbaum G, Roesch MR, Stalnaker TA. Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci. 2006;29(2):116–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giguere M, Goldman-Rakic PS. Mediodorsal nucleus: areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. J Comp Neurol. 1988;277(2):195–213.

    Article  CAS  PubMed  Google Scholar 

  8. Goldman-Rakic PS, Porrino LJ. The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J Comp Neurol. 1985;242(4):535–60.

    Article  CAS  PubMed  Google Scholar 

  9. Graybiel AM. Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci. 1990;13(7):244–54.

    Article  CAS  PubMed  Google Scholar 

  10. Haber SN, Lynd-Balta E, Mitchell SJ. The organization of the descending ventral pallidal projections in the monkey. J Comp Neurol. 1993;329(1):111–28.

    Article  CAS  PubMed  Google Scholar 

  11. Meerwijk EL, Ford JM, Weiss SJ. Brain regions associated with psychological pain: implications for a neural network and its relationship to physical pain. Brain Imaging Behav. 2013;7(1):1–14.

    Article  PubMed  Google Scholar 

  12. Mega MS, Cummings JL. Frontal-subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci. 1994;6(4):358–70.

    Article  CAS  PubMed  Google Scholar 

  13. Sadikot AF, Parent A, François C. Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol. 1992;315(2):137–59.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang S, Xu M, Chang WC, Ma C, Hoang Do JP, Jeong D, Lei T, Fan JL, Dan Y. Organization of long-range inputs and outputs of frontal cortex for top-down control. Nat Neurosci. 2016;19(12):1733–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Palaniyappan L, Maayan N, Bergman H, Davenport C, Adams CE, Soares-Weiser K. Voxel-based morphometry for separation of schizophrenia from other types of psychosis in first episode psychosis. Cochrane Database Syst Rev. 2015;8:CD011021.

    Google Scholar 

  16. Williams MR, Chaudhry R, Perera S, Pearce RK, Hirsch SR, Ansorge O, Thom M, Maier M. Changes in cortical thickness in the frontal lobes in schizophrenia are a result of thinning of pyramidal cell layers. Eur Arch Psychiatry Clin Neurosci. 2013;263(1):25–39.

    Article  CAS  PubMed  Google Scholar 

  17. Zipursky RB, Lim KO, Sullivan EV, Brown BW, Pfefferbaum A. Widespread cerebral gray matter volume deficits in schizophrenia. Arch Gen Psychiatry. 1992;49(3):195–205.

    Article  CAS  PubMed  Google Scholar 

  18. Lauer M, Senitz D, Beckmann H. Increased volume of the nucleus accumbens in schizophrenia. J Neural Transm (Vienna). 2001;108(6):645–60.

    Article  CAS  Google Scholar 

  19. Lesch A, Bogerts B. The diencephalon in schizophrenia: evidence for reduced thickness of the periventricular grey matter. Eur Arch Psychiatry Neurol Sci. 1984;234(4):212–9.

    Article  CAS  PubMed  Google Scholar 

  20. Voineskos AN, Rajji TK, Lobaugh NJ, Miranda D, Shenton ME, Kennedy JL, Pollock BG, Mulsant BH. Age-related decline in white matter tract integrity and cognitive performance: a DTI tractography and structural equation modeling study. Neurobiol Aging. 2012;33(1):21–34.

    Article  PubMed  Google Scholar 

  21. Wheeler AL, Voineskos AN. A review of structural neuroimaging in schizophrenia: from connectivity to connectomics. Front Hum Neurosci. 2014;8:653.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Highley JR, DeLisi LE, Roberts N, Webb JA, Relja M, Razi K, Crow TJ. Sex-dependent effects of schizophrenia: an MRI study of gyral folding, and cortical and white matter volume. Psychiatry Res. 2003;124(1):11–23.

    Article  PubMed  Google Scholar 

  23. Highley JR, Walker MA, Esiri MM, McDonald B, Harrison PJ, Crow TJ. Schizophrenia and the frontal lobes: post-mortem stereological study of tissue volume. Br J Psychiatry. 2001;178:337–43.

    Article  CAS  PubMed  Google Scholar 

  24. Birur B, Kraguljac NV, Shelton RC, Lahti AC. Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder-a systematic review of the magnetic resonance neuroimaging literature. NPJ Schizophr. 2017;3:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kubicki M, McCarley R, Westin CF, Park HJ, Maier S, Kikinis R, Jolesz FA, Shenton ME. A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res. 2007;41(1–2):15–30.

    Article  PubMed  Google Scholar 

  26. Mubarik A, Tohid H. Frontal lobe alterations in schizophrenia: a review. Trends Psychiatry Psychother. 2016;38(4):198–206.

    Article  PubMed  Google Scholar 

  27. Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res. 2001;49(1–2):1–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Benes FM, Bird ED. An analysis of the arrangement of neurons in the cingulate cortex of schizophrenic patients. Arch Gen Psychiatry. 1987;44(7):608–16.

    Article  CAS  PubMed  Google Scholar 

  29. Benes FM, Davidson J, Bird ED. Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. Arch Gen Psychiatry. 1986;43(1):31–5.

    Article  CAS  PubMed  Google Scholar 

  30. Fusar-Poli P, Smieskova R, Kempton MJ, Ho BC, Andreasen NC, Borgwardt S. Progressive brain changes in schizophrenia related to antipsychotic treatment? A meta-analysis of longitudinal MRI studies. Neurosci Biobehav Rev. 2013;37(8):1680–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo JY, Huhtaniska S, Miettunen J, Jääskeläinen E, Kiviniemi V, Nikkinen J, Moilanen J, Haapea M, Mäki P, Jones PB, Veijola J, Isohanni M, Murray GK. Longitudinal regional brain volume loss in schizophrenia: relationship to antipsychotic medication and change in social function. Schizophr Res. 2015;168(1–2):297–304.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lawrie SM. Are structural brain changes in schizophrenia related to antipsychotic medication? A narrative review of the evidence from a clinical perspective. Ther Adv Psychopharmacol. 2018;8(11):319–26.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vita A, De Peri L, Deste G, Barlati S, Sacchetti E. The effect of antipsychotic treatment on cortical gray matter changes in schizophrenia: does the class matter? A meta-analysis and meta-regression of longitudinal magnetic resonance imaging studies. Biol Psychiatry. 2015;78(6):403–12.

    Article  CAS  PubMed  Google Scholar 

  34. Selemon LD, Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry. 1999;45(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  35. Orellana G, Slachevsky A. Executive functioning in schizophrenia. Front Psych. 2013;4:35.

    Google Scholar 

  36. Orellana G, Slachevsky A, Peña M. Executive attention impairment in first-episode schizophrenia. BMC Psychiatry. 2012;12:154.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kapur S, Craik FI, Tulving E, Wilson AA, Houle S, Brown GM. Neuroanatomical correlates of encoding in episodic memory: levels of processing effect. Proc Natl Acad Sci U S A. 1994;91(6):2008–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marvel CL, Desmond JE. The contributions of cerebro-cerebellar circuitry to executive verbal working memory. Cortex. 2010;46(7):880–95.

    Article  PubMed  Google Scholar 

  39. McCarthy G, Blamire AM, Puce A, Nobre AC, Bloch G, Hyder F, Goldman-Rakic P, Shulman RG. Functional magnetic resonance imaging of human prefrontal cortex activation during a spatial working memory task. Proc Natl Acad Sci U S A. 1994;91(18):8690–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Petrides M, Alivisatos B, Evans AC, Meyer E. Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proc Natl Acad Sci U S A. 1993;90(3):873–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pierrot-Deseilligny C, Israël I, Berthoz A, Rivaud S, Gaymard B. Role of the different frontal lobe areas in the control of the horizontal component of memory-guided saccades in man. Exp Brain Res. 1993;95(1):166–71.

    Article  CAS  PubMed  Google Scholar 

  42. Ren W, Lui S, Deng W, Li F, Li M, Huang X, Wang Y, Li T, Sweeney JA, Gong Q. Anatomical and functional brain abnormalities in drug-naive first-episode schizophrenia. Am J Psychiatry. 2013;170(11):1308–16.

    Article  PubMed  Google Scholar 

  43. Cannon TD, Glahn DC, Kim J, Van Erp TG, Karlsgodt K, Cohen MS, Nuechterlein KH, Bava S, Shirinyan D. Dorsolateral prefrontal cortex activity during maintenance and manipulation of information in working memory in patients with schizophrenia. Arch Gen Psychiatry. 2005;62(10):1071–80.

    Article  PubMed  Google Scholar 

  44. Mitelman SA, Buchsbaum MS, Brickman AM, Shihabuddin L. Cortical intercorrelations of frontal area volumes in schizophrenia. NeuroImage. 2005;27(4):753–70.

    Article  PubMed  Google Scholar 

  45. Perlstein WM, Carter CS, Noll DC, Cohen JD. Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am J Psychiatry. 2001;158(7):1105–13.

    Article  CAS  PubMed  Google Scholar 

  46. Buchy L, Ad-Dab’bagh Y, Lepage C, Malla A, Joober R, Evans A, Lepage M. Symptom attribution in first episode psychosis: a cortical thickness study. Psychiatry Res. 2012;203(1):6–13.

    Article  PubMed  Google Scholar 

  47. Kreczmanski P, Schmidt-Kastner R, Heinsen H, Steinbusch HW, Hof PR, Schmitz C. Stereological studies of capillary length density in the frontal cortex of schizophrenics. Acta Neuropathol. 2005;109(5):510–8.

    Article  PubMed  Google Scholar 

  48. Pakkenberg B. Total nerve cell number in neocortex in chronic schizophrenics and controls estimated using optical disectors. Biol Psychiatry. 1993;34(11):768–72.

    Article  CAS  PubMed  Google Scholar 

  49. Thune JJ, Uylings HB, Pakkenberg B. No deficit in total number of neurons in the prefrontal cortex in schizophrenics. J Psychiatr Res. 2001;35(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  50. Pierri JN, Volk CL, Auh S, Sampson A, Lewis DA. Somal size of prefrontal cortical pyramidal neurons in schizophrenia: differential effects across neuronal subpopulations. Biol Psychiatry. 2003;54(2):111–20.

    Article  PubMed  Google Scholar 

  51. Rajkowska G, Halaris A, Selemon LD. Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry. 2001;49(9):741–52.

    Article  CAS  PubMed  Google Scholar 

  52. Rajkowska G, Selemon LD, Goldman-Rakic PS. Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry. 1998;55(3):215–24.

    Article  CAS  PubMed  Google Scholar 

  53. Selemon LD, Rajkowska G. Cellular pathology in the dorsolateral prefrontal cortex distinguishes schizophrenia from bipolar disorder. Curr Mol Med. 2003;3(5):427–36.

    Article  CAS  PubMed  Google Scholar 

  54. Cullen TJ, Walker MA, Eastwood SL, Esiri MM, Harrison PJ, Crow TJ. Anomalies of asymmetry of pyramidal cell density and structure in dorsolateral prefrontal cortex in schizophrenia. Br J Psychiatry. 2006;188:26–31.

    Article  PubMed  Google Scholar 

  55. Mauney SA, Athanas KM, Pantazopoulos H, Shaskan N, Passeri E, Berretta S, Woo TU. Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia. Biol Psychiatry. 2013;74(6):427–35.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE Jr, Jones EG. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry. 1995;52(4):258–66.

    Article  CAS  PubMed  Google Scholar 

  57. Daviss SR, Lewis DA. Local circuit neurons of the prefrontal cortex in schizophrenia: selective increase in the density of calbindin-immunoreactive neurons. Psychiatry Res. 1995;59(1–2):81–96.

    Article  CAS  PubMed  Google Scholar 

  58. Tooney PA, Chahl LA. Neurons expressing calcium-binding proteins in the prefrontal cortex in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2004;28(2):273–8.

    Article  CAS  Google Scholar 

  59. Law AJ, Harrison PJ. The distribution and morphology of prefrontal cortex pyramidal neurons identified using anti-neurofilament antibodies SMI32, N200 and FNP7. Normative data and a comparison in subjects with schizophrenia, bipolar disorder or major depression. J Psychiatr Res. 2003;37(6):487–99.

    Article  PubMed  Google Scholar 

  60. Miguel-Hidalgo JJ, Dubey P, Shao Q, Stockmeier C, Rajkowska G. Unchanged packing density but altered size of neurofilament immunoreactive neurons in the prefrontal cortex in schizophrenia and major depression. Schizophr Res. 2005;76(2–3):159–71.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Benes FM, Todtenkopf MS, Taylor JB. Differential distribution of tyrosine hydroxylase fibers on small and large neurons in layer II of anterior cingulate cortex of schizophrenic brain. Synapse. 1997;25(1):80–92.

    Article  CAS  PubMed  Google Scholar 

  62. Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry. 2000;57(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  63. Kolluri N, Sun Z, Sampson AR, Lewis DA. Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia. Am J Psychiatry. 2005;162(6):1200–2.

    Article  PubMed  Google Scholar 

  64. Thompson PM, Sower AC, Perrone-Bizzozero NI. Altered levels of the synaptosomal associated protein SNAP-25 in schizophrenia. Biol Psychiatry. 1998;43(4):239–43.

    Article  CAS  PubMed  Google Scholar 

  65. Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI. Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res. 2004;67(2–3):269–75.

    Article  PubMed  Google Scholar 

  66. Uranova NA, Vostrikov VM, Vikhreva OV, Zimina IS, Kolomeets NS, Orlovskaya DD. The role of oligodendrocyte pathology in schizophrenia. Int J Neuropsychopharmacol. 2007;10(4):537–45.

    Article  CAS  PubMed  Google Scholar 

  67. Vostrikov VM, Uranova NA, Orlovskaya DD. Deficit of perineuronal oligodendrocytes in the prefrontal cortex in schizophrenia and mood disorders. Schizophr Res. 2007;94(1–3):273–80.

    Article  PubMed  Google Scholar 

  68. Kolomeets NS, Uranova NA. Reduced oligodendrocyte density in layer 5 of the prefrontal cortex in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2019;269(4):379–86.

    Article  PubMed  Google Scholar 

  69. Uranova NA, Vikhreva OV, Rachmanova VI, Orlovskaya DD. Ultrastructural alterations of myelinated fibers and oligodendrocytes in the prefrontal cortex in schizophrenia: a postmortem morphometric study. Schizophr Res Treat. 2011;2011:325789.

    Google Scholar 

  70. Uranova NA, Zimina IS, Vikhreva OV, Krukov NO, Rachmanova VI, Orlovskaya DD. Ultrastructural damage of capillaries in the neocortex in schizophrenia. World J Biol Psychiatry. 2010;11(3):567–78.

    Article  PubMed  Google Scholar 

  71. Vostrikov V, Orlovskaya D, Uranova N. Deficit of pericapillary oligodendrocytes in the prefrontal cortex in schizophrenia. World J Biol Psychiatry. 2008;9(1):34–42.

    Article  PubMed  Google Scholar 

  72. Uranova NA, Vikhreva OV, Rakhmanova VI, Orlovskaya DD. Dystrophy of oligodendrocytes and adjacent microglia in prefrontal gray matter in schizophrenia. Front Psych. 2020;11:204.

    Article  Google Scholar 

  73. Garey L. When cortical development goes wrong: schizophrenia as a neurodevelopmental disease of microcircuits. J Anat. 2010;217(4):324–33.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Garey LJ, Von Bussmann KA, Hirsch SR. Decreased numerical density of kainate receptor-positive neurons in the orbitofrontal cortex of chronic schizophrenics. Exp Brain Res. 2006;173(2):234–42.

    Article  CAS  PubMed  Google Scholar 

  75. Radewicz K, Garey LJ, Gentleman SM, Reynolds R. Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol. 2000;59(2):137–50.

    Article  CAS  PubMed  Google Scholar 

  76. Hercher C, Chopra V, Beasley CL. Evidence for morphological alterations in prefrontal white matter glia in schizophrenia and bipolar disorder. J Psychiatry Neurosci. 2014;39(6):376–85.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Liu Z, Tam WC, Xie Y, Zhao J. The relationship between regional cerebral blood flow and the Wisconsin Card Sorting Test in negative schizophrenia. Psychiatry Clin Neurosci. 2002;56(1):3–7.

    Article  PubMed  Google Scholar 

  78. Kawasaki Y, Suzuki M, Maeda Y, Urata K, Yamaguchi N, Matsuda H, Hisada K, Takashima T. Regional cerebral blood flow in patients with schizophrenia. A preliminary report. Eur Arch Psychiatry Clin Neurosci. 1992;241(4):195–200.

    Article  CAS  PubMed  Google Scholar 

  79. Ortuño F, Moreno-Iñiguez M, Millán M, Soutullo CA, Bonelli RM. Cortical blood flow during rest and Wisconsin Card Sorting Test performance in schizophrenia. Wien Med Wochenschr. 2006;156(7–8):179–84.

    Article  PubMed  Google Scholar 

  80. Sukumar N, Sabesan P, Anazodo U, Palaniyappan L. Neurovascular uncoupling in schizophrenia: a bimodal meta-analysis of brain perfusion and glucose metabolism. Front Psych. 2020;11:754.

    Article  Google Scholar 

  81. Costa E. Building a bridge between neurobiology and mental illness. J Psychiatr Res. 1992;26(4):449–60.

    Article  CAS  PubMed  Google Scholar 

  82. Benes FM, Khan Y, Vincent SL, Wickramasinghe R. Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse. 1996;22(4):338–49.

    Article  CAS  PubMed  Google Scholar 

  83. Benes FM, Vincent SL, Marie A, Khan Y. Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience. 1996;75(4):1021–31.

    Article  CAS  PubMed  Google Scholar 

  84. Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS. Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. 1996:16;381(6579):245–8. https://doi.org/10.1038/381245a0.

  85. Vincent SL, Khan Y, Benes FM. Cellular distribution of dopamine D1 and D2 receptors in rat medial prefrontal cortex. 1993;13(6):2551–64. https://doi.org/10.1523/JNEUROSCI.13-06-02551.1993.

  86. Benes FM, Sorensen I, Vincent SL, Bird ED, Sathi M. Increased density of glutamate-immunoreactive vertical processes in superficial laminae in cingulate cortex of schizophrenic brain. Cereb Cortex. 1992;2(6):503–12.

    Article  CAS  PubMed  Google Scholar 

  87. Dean B, Hussain T, Hayes W, Scarr E, Kitsoulis S, Hill C, Opeskin K, Copolov DL. Changes in serotonin2A and GABA(A) receptors in schizophrenia: studies on the human dorsolateral prefrontal cortex. J Neurochem. 1999;72(4):1593–9.

    Article  CAS  PubMed  Google Scholar 

  88. Farnbach-Pralong D, Bradbury R, Copolov D, Dean B. Clozapine and olanzapine treatment decreases rat cortical and limbic GABA(A) receptors. Eur J Pharmacol. 1998;349(2–3):R7–8.

    Article  CAS  PubMed  Google Scholar 

  89. Hanada S, Mita T, Nishino N, Tanaka C. [3H]muscimol binding sites increased in autopsied brains of chronic schizophrenics. Life Sci. 1987;40(3):259–66.

    Article  CAS  PubMed  Google Scholar 

  90. Newell KA, Zavitsanou K, Jew SK, Huang XF. Alterations of muscarinic and GABA receptor binding in the posterior cingulate cortex in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2007;31(1):225–33.

    Article  CAS  Google Scholar 

  91. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzunov DP, Smalheiser NR, Davis JM, Pandey GN, Pappas GD, Tueting P, Sharma RP, Costa E. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci U S A. 1998;95(26):15718–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ishikawa M, Mizukami K, Iwakiri M, Hidaka S, Asada T. Immunohistochemical and immunoblot study of GABA(A) alpha1 and beta2/3 subunits in the prefrontal cortex of subjects with schizophrenia and bipolar disorder. Neurosci Res. 2004b;50(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  93. Mizukami K, Ishikawa M, Hidaka S, Iwakiri M, Sasaki M, Iritani S. Immunohistochemical localization of GABAB receptor in the entorhinal cortex and inferior temporal cortex of schizophrenic brain. Prog Neuro-Psychopharmacol Biol Psychiatry. 2002;26(2):393–6.

    Article  CAS  Google Scholar 

  94. Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC. Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABA(A) receptor alpha-1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messenger RNA expression. Neuroscience. 1999;93(2):441–8.

    Article  CAS  PubMed  Google Scholar 

  95. Volk DW, Pierri JN, Fritschy JM, Auh S, Sampson AR, Lewis DA. Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. Cereb Cortex. 2002;12(10):1063–70.

    Article  PubMed  Google Scholar 

  96. Weickert CS, Kleinman JE. The neuroanatomy and neurochemistry of schizophrenia. Psychiatr Clin North Am. 1998;21(1):57–75.

    Article  CAS  PubMed  Google Scholar 

  97. Reynolds GP, Stroud D. Hippocampal benzodiazepine receptors in schizophrenia. J Neural Transm Gen Sect. 1993;93(2):151–5.

    Article  CAS  PubMed  Google Scholar 

  98. Owen F, Cross AJ, Crow TJ, Lofthouse R, Poulter M. Neurotransmitter receptors in brain in schizophrenia. Acta Psychiatr Scand Suppl. 1981;291:20–8.

    Article  CAS  PubMed  Google Scholar 

  99. Pandey GN, Conley RR, Pandey SC, Goel S, Roberts RC, Tamminga CA, Chute D, Smialek J. Benzodiazepine receptors in the post-mortem brain of suicide victims and schizophrenic subjects. Psychiatry Res. 1997;71(3):137–49.

    Article  CAS  PubMed  Google Scholar 

  100. Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH. Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature. 1989;338(6216):582–5.

    Article  CAS  PubMed  Google Scholar 

  101. Akbarian S, Huntsman MM, Kim JJ, Tafazzoli A, Potkin SG, Bunney WE Jr, Jones EG. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls. Cereb Cortex. 1995;5(6):550–60.

    Article  CAS  PubMed  Google Scholar 

  102. Huntsman MM, Tran BV, Potkin SG, Bunney WE Jr, Jones EG. Altered ratios of alternatively spliced long and short gamma2 subunit mRNAs of the gamma-amino butyrate type A receptor in prefrontal cortex of schizophrenics. Proc Natl Acad Sci U S A. 1998;95(25):15066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ishikawa M, Mizukami K, Iwakiri M, Hidaka S, Asada T. GABAA receptor gamma subunits in the prefrontal cortex of patients with schizophrenia and bipolar disorder. Neuroreport. 2004;15(11):1809–12.

    Article  CAS  PubMed  Google Scholar 

  104. Beneyto M, Abbott A, Hashimoto T, Lewis DA. Lamina-specific alterations in cortical GABA(A) receptor subunit expression in schizophrenia. Cereb Cortex. 2011;21(5):999–1011.

    Article  PubMed  Google Scholar 

  105. Duncan CE, Webster MJ, Rothmond DA, Bahn S, Elashoff M, Shannon Weickert C. Prefrontal GABA(A) receptor alpha-subunit expression in normal postnatal human development and schizophrenia. J Psychiatr Res. 2010;44(10):673–81.

    Article  PubMed  Google Scholar 

  106. Skilbeck KJ, O’Reilly JN, Johnston GA, Hinton T. The effects of antipsychotic drugs on GABAA receptor binding depend on period of drug treatment and binding site examined. Schizophr Res. 2007;90(1–3):76–80.

    Article  PubMed  Google Scholar 

  107. Skilbeck KJ, O’Reilly JN, Johnston GA, Hinton T. Antipsychotic drug administration differentially affects [3H]muscimol and [3H]flunitrazepam GABA(A) receptor binding sites. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32(2):492–8.

    Article  CAS  Google Scholar 

  108. Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA. Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry. 2000;57(3):237–45.

    Article  CAS  PubMed  Google Scholar 

  109. Akbarian S, Huang HS. Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. Brain Res Rev. 2006;52(2):293–304.

    Article  CAS  PubMed  Google Scholar 

  110. Blatt GJ, Fatemi SH. Alterations in GABAergic biomarkers in the autism brain: research findings and clinical implications. Anat Rec (Hoboken). 2011;294(10):1646–52.

    Article  CAS  Google Scholar 

  111. Curley AA, Lewis DA. Cortical basket cell dysfunction in schizophrenia. J Physiol. 2012;590(4):715–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S, Minns M. Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc Natl Acad Sci U S A. 2007;104(24):10164–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen X, Zhang Z, Zhang Q, Zhao W, Zhai J, Chen M, Du B, Deng X, Ji F, Wang C, Xiang YT, Wu H, Dong Q, Chen C, Li J. Effect of rs1344706 in the ZNF804A gene on the brain network. Neuroimage Clin. 2018;17:1000–5.

    Article  PubMed  Google Scholar 

  114. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, Impagnatiello F, Pandey G, Pesold C, Sharma R, Uzunov D, Costa E. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry. 2000;57(11):1061–9.

    Article  CAS  PubMed  Google Scholar 

  115. Volman V, Behrens MM, Sejnowski TJ. Downregulation of parvalbumin at cortical GABA synapses reduces network gamma oscillatory activity. J Neurosci. 2011;31(49):18137–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bharadwaj R, Jiang Y, Mao W, Jakovcevski M, Dincer A, Krueger W, Garbett K, Whittle C, Tushir JS, Liu J, Sequeira A, Vawter MP, Gardner PD, Casaccia P, Rasmussen T, Bunney WE Jr, Mirnics K, Futai K, Akbarian S. Conserved chromosome 2q31 conformations are associated with transcriptional regulation of GAD1 GABA synthesis enzyme and altered in prefrontal cortex of subjects with schizophrenia. J Neurosci. 2013;33(29):11839–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S, Bergen SE, Collins AL, Crowley JJ, Fromer M, Kim Y, Lee SH, Magnusson PK, Sanchez N, Stahl EA, Williams S, Wray NR, Xia K, Bettella F, Borglum AD, Bulik-Sullivan BK, Cormican P, Craddock N, de Leeuw C, Durmishi N, Gill M, Golimbet V, Hamshere ML, Holmans P, Hougaard DM, Kendler KS, Lin K, Morris DW, Mors O, Mortensen PB, Neale BM, O’Neill FA, Owen MJ, Milovancevic MP, Posthuma D, Powell J, Richards AL, Riley BP, Ruderfer D, Rujescu D, Sigurdsson E, Silagadze T, Smit AB, Stefansson H, Steinberg S, Suvisaari J, Tosato S, Verhage M, Walters JT, Levinson DF, Gejman PV, Laurent C, Mowry BJ, O’Donovan MC, Pulver AE, Schwab SG, Wildenauer DB, Dudbridge F, Shi J, Albus M, Alexander M, Campion D, Cohen D, Dikeos D, Duan J, Eichhammer P, Godard S, Hansen M, Lerer FB, Liang KY, Maier W, Mallet J, Nertney DA, Nestadt G, Norton N, Papadimitriou GN, Ribble R, Sanders AR, Silverman JM, Walsh D, Williams NM, Wormley B, Arranz MJ, Bakker S, Bender S, Bramon E, Collier D, Crespo-Facorro B, Hall J, Iyegbe C, Jablensky A, Kahn RS, Kalaydjieva L, Lawrie S, Lewis CM, Linszen DH, Mata I, McIntosh A, Murray RM, Ophoff RA, Van Os J, Walshe M, Weisbrod M, Wiersma D, Donnelly P, Barroso I, Blackwell JM, Brown MA, Casas JP, Corvin AP, Deloukas P, Duncanson A, Jankowski J, Markus HS, Mathew CG, Palmer CN, Plomin R, Rautanen A, Sawcer SJ, Trembath RC, Viswanathan AC, Wood NW, Spencer CC, Band G, Bellenguez C, Freeman C, Hellenthal G, Giannoulatou E, Pirinen M, Pearson RD, Strange A, Su Z, Vukcevic D, Langford C, Hunt SE, Edkins S, Gwilliam R, Blackburn H, Bumpstead SJ, Dronov S, Gillman M, Gray E, Hammond N, Jayakumar A, McCann OT, Liddle J, Potter SC, Ravindrarajah R, Ricketts M, Tashakkori-Ghanbaria A, Waller MJ, Weston P, Widaa S, Whittaker P, McCarthy MI, Stefansson K, Scolnick E, Purcell S, McCarroll SA, Sklar P, Hultman CM, Sullivan PF. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet. 2013;45(10):1150–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Akbarian S. Epigenetic mechanisms in schizophrenia. Dialogues Clin Neurosci. 2014;16(3):405–17.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Heck A, Fastenrath M, Ackermann S, Auschra B, Bickel H, Coynel D, Gschwind L, Jessen F, Kaduszkiewicz H, Maier W, Milnik A, Pentzek M, Riedel-Heller SG, Ripke S, Spalek K, Sullivan P, Vogler C, Wagner M, Weyerer S, Wolfsgruber S, de Quervain DJ, Papassotiropoulos A. Converging genetic and functional brain imaging evidence links neuronal excitability to working memory, psychiatric disease, and brain activity. Neuron. 2014;81(5):1203–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Banerjee A, Wang HY, Borgmann-Winter KE, MacDonald ML, Kaprielian H, Stucky A, Kvasic J, Egbujo C, Ray R, Talbot K, Hemby SE, Siegel SJ, Arnold SE, Sleiman P, Chang X, Hakonarson H, Gur RE, Hahn CG. Src kinase as a mediator of convergent molecular abnormalities leading to NMDAR hypoactivity in schizophrenia. Mol Psychiatry. 2015;20(9):1091–100.

    Article  CAS  PubMed  Google Scholar 

  121. Bunney WE, Bunney BG. Evidence for a compromised dorsolateral prefrontal cortical parallel circuit in schizophrenia. Brain Res Brain Res Rev. 2000;31(2–3):138–46.

    Article  CAS  PubMed  Google Scholar 

  122. Euston DR, Gruber AJ, McNaughton BL. The role of medial prefrontal cortex in memory and decision making. Neuron. 2012;76(6):1057–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Marsman A, van den Heuvel MP, Klomp DW, Kahn RS, Luijten PR, Hulshoff Pol HE. Glutamate in schizophrenia: a focused review and meta-analysis of 1H-MRS studies. Schizophr Bull. 2013;39(1):120–9.

    Article  PubMed  Google Scholar 

  124. Dehmelt L, Halpain S. The MAP2/Tau family of microtubule-associated proteins. Genome Biol. 2005;6(1):204.

    Article  PubMed  Google Scholar 

  125. Jones LB, Johnson N, Byne W. Alterations in MAP2 immunocytochemistry in areas 9 and 32 of schizophrenic prefrontal cortex. Psychiatry Res. 2002;114(3):137–48.

    Article  CAS  PubMed  Google Scholar 

  126. Broadbelt K, Jones LB. Evidence of altered calmodulin immunoreactivity in areas 9 and 32 of schizophrenic prefrontal cortex. J Psychiatr Res. 2008;42(8):612–21.

    Article  PubMed  Google Scholar 

  127. Prichard L, Deloulme JC, Storm DR. Interactions between neurogranin and calmodulin in vivo. J Biol Chem. 1999;274(12):7689–94.

    Article  CAS  PubMed  Google Scholar 

  128. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, Wayland M, Freeman T, Dudbridge F, Lilley KS, Karp NA, Hester S, Tkachev D, Mimmack ML, Yolken RH, Webster MJ, Torrey EF, Bahn S. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry. 2004;9(7):684–97.

    Article  CAS  PubMed  Google Scholar 

  129. Perrone-Bizzozero NI, Sower AC, Bird ED, Benowitz LI, Ivins KJ, Neve RL. Levels of the growth-associated protein GAP-43 are selectively increased in association cortices in schizophrenia. Proc Natl Acad Sci U S A. 1996;93(24):14182–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Porton B, Wetsel WC. Reduction of synapsin III in the prefrontal cortex of individuals with schizophrenia. Schizophr Res. 2007;94(1–3):366–70.

    Article  PubMed  Google Scholar 

  131. Athanas KM, Mauney SL, Woo TW. Increased extracellular clusterin in the prefrontal cortex in schizophrenia. Schizophr Res. 2015;169(1–3):381–5.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

    Article  CAS  PubMed  Google Scholar 

  133. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149(6):1192–205.

    Article  CAS  PubMed  Google Scholar 

  134. Manisastry SM, Han M, Linask KK. Early temporal-specific responses and differential sensitivity to lithium and Wnt-3A exposure during heart development. Dev Dyn. 2006;235(8):2160–74.

    Article  CAS  PubMed  Google Scholar 

  135. Beasley CL, Zhang ZJ, Patten I, Reynolds GP. Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins. Biol Psychiatry. 2002;52(7):708–15.

    Article  CAS  PubMed  Google Scholar 

  136. Beasley C, Cotter D, Everall I. An investigation of the Wnt-signalling pathway in the prefrontal cortex in schizophrenia, bipolar disorder and major depressive disorder. Schizophr Res. 2002;58(1):63–7.

    Article  PubMed  Google Scholar 

  137. Mei J, Kolbin D, Kao HT, Porton B. Protein expression profiling of postmortem brain in schizophrenia. Schizophr Res. 2006;84(2–3):204–13.

    Article  PubMed  Google Scholar 

  138. Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E, Turck CW. Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2009;259(3):151–63.

    Article  PubMed  Google Scholar 

  139. Goldman-Rakic PS, Selemon LD. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull. 1997;23(3):437–58.

    Article  CAS  PubMed  Google Scholar 

  140. Selemon LD, Zecevic N. Schizophrenia: a tale of two critical periods for prefrontal cortical development. Transl Psychiatry. 2015;5:e623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Addington AM, Gornick M, Duckworth J, Sporn A, Gogtay N, Bobb A, Greenstein D, Lenane M, Gochman P, Baker N, Balkissoon R, Vakkalanka RK, Weinberger DR, Rapoport JL, Straub RE. GAD1 (2q31.1), which encodes glutamic acid decarboxylase (GAD67), is associated with childhood-onset schizophrenia and cortical gray matter volume loss. Mol Psychiatry. 2005;10(6):581–8.

    Article  CAS  PubMed  Google Scholar 

  142. Straub RE, Lipska BK, Egan MF, Goldberg TE, Callicott JH, Mayhew MB, Vakkalanka RK, Kolachana BS, Kleinman JE, Weinberger DR. Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression. Mol Psychiatry. 2007;12(9):854–69.

    Article  CAS  PubMed  Google Scholar 

  143. Marenco S, Savostyanova AA, van der Veen JW, Geramita M, Stern A, Barnett AS, Kolachana B, Radulescu E, Zhang F, Callicott JH, Straub RE, Shen J, Weinberger DR. Genetic modulation of GABA levels in the anterior cingulate cortex by GAD1 and COMT. Neuropsychopharmacology. 2010;35(8):1708–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Huang HS, Matevossian A, Whittle C, Kim SY, Schumacher A, Baker SP, Akbarian S. Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. J Neurosci. 2007;27(42):11254–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kahn RS, Sommer IE, Murray RM, Meyer-Lindenberg A, Weinberger DR, Cannon TD, O’Donovan M, Correll CU, Kane JM, van Os J, Insel TR. Schizophrenia. Nat Rev Dis Primers. 2015;1:15067.

    Article  PubMed  Google Scholar 

  146. Coelewij L, Curtis D. Mini-review: update on the genetics of schizophrenia. Ann Hum Genet. 2018;82(5):239–43.

    Article  PubMed  Google Scholar 

  147. Santarelli DM, Carroll AP, Cairns HM, Tooney PA, Cairns MJ. Schizophrenia-associated MicroRNA-Gene Interactions in the Dorsolateral Prefrontal Cortex. Genomics Proteomics Bioinformatics. 2019;17(6):623–34.

    Article  PubMed  Google Scholar 

  148. Smalheiser NR, Lugli G, Zhang H, Rizavi H, Cook EH, Dwivedi Y. Expression of microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar disorder and depressed subjects. PLoS One. 2014;9(1):e86469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Smigielski L, Jagannath V, Rössler W, Walitza S, Grünblatt E. Epigenetic mechanisms in schizophrenia and other psychotic disorders: a systematic review of empirical human findings. Mol Psychiatry. 2020;25(8):1718–48.

    Article  PubMed  Google Scholar 

  150. Burks JD, Conner AK, Bonney PA, Glenn CA, Baker CM, Boettcher LB, Briggs RG, O’Donoghue DL, Wu DH, Sughrue ME. Anatomy and white matter connections of the orbitofrontal gyrus. J Neurosurg. 2018;128(6):1865–72.

    Article  PubMed  Google Scholar 

  151. Nakamura M, Nestor PG, Levitt JJ, Cohen AS, Kawashima T, Shenton ME, McCarley RW. Orbitofrontal volume deficit in schizophrenia and thought disorder. Brain. 2008;131(Pt 1):180–95.

    PubMed  Google Scholar 

  152. Zhao C, Zhu J, Liu X, Pu C, Lai Y, Chen L, Yu X, Hong N. Structural and functional brain abnormalities in schizophrenia: a cross-sectional study at different stages of the disease. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;83:27–32.

    Article  Google Scholar 

  153. Kim GW, Kim YH, Jeong GW. Whole brain volume changes and its correlation with clinical symptom severity in patients with schizophrenia: a DARTEL-based VBM study. PLoS One. 2017;12(5):e0177251.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Shan XX, Ou YP, Pan P, Ding YD, Zhao J, Liu F, Chen JD, Guo WB, Zhao JP. Increased frontal gray matter volume in individuals with prodromal psychosis. CNS Neurosci Ther. 2019;25(9):987–94.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Ding Y, Ou Y, Pan P, Shan X, Chen J, Liu F, Zhao J, Guo W. Brain structural abnormalities as potential markers for detecting individuals with ultra-high risk for psychosis: a systematic review and meta-analysis. Schizophr Res. 2019;209:22–31.

    Article  PubMed  Google Scholar 

  156. Kanahara N, Sekine Y, Haraguchi T, Uchida Y, Hashimoto K, Shimizu E, Iyo M. Orbitofrontal cortex abnormality and deficit schizophrenia. Schizophr Res. 2013;143(2–3):246–52.

    Article  PubMed  Google Scholar 

  157. Cotter D, Hudson L, Landau S. Evidence for orbitofrontal pathology in bipolar disorder and major depression, but not in schizophrenia. Bipolar Disord. 2005;7(4):358–69.

    Article  PubMed  Google Scholar 

  158. Toro C, Deakin JF. NMDA receptor subunit NRI and postsynaptic protein PSD-95 in hippocampus and orbitofrontal cortex in schizophrenia and mood disorder. Schizophr Res. 2005;80(2–3):323–30.

    Article  PubMed  Google Scholar 

  159. Chen X, Nelson CD, Li X, Winters CA, Azzam R, Sousa AA, Leapman RD, Gainer H, Sheng M, Reese TS. PSD-95 is required to sustain the molecular organization of the postsynaptic density. J Neurosci. 2011;31(17):6329–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yoo KS, Lee K, Oh JY, Lee H, Park H, Park YS, Kim HK. Postsynaptic density protein 95 (PSD-95) is transported by KIF5 to dendritic regions. Mol Brain. 2019;12(1):97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mohnke S, Erk S, Schnell K, Schütz C, Romanczuk-Seiferth N, Grimm O, Haddad L, Pöhland L, Garbusow M, Schmitgen MM, Kirsch P, Esslinger C, Rietschel M, Witt SH, Nöthen MM, Cichon S, Mattheisen M, Mühleisen T, Jensen J, Schott BH, Maier W, Heinz A, Meyer-Lindenberg A, Walter H. Further evidence for the impact of a genome-wide-supported psychosis risk variant in ZNF804A on the Theory of Mind Network. Neuropsychopharmacology. 2014;39(5):1196–205.

    Article  CAS  PubMed  Google Scholar 

  162. Chang H, Xiao X, Li M. The schizophrenia risk gene ZNF804A: clinical associations, biological mechanisms and neuronal functions. Mol Psychiatry. 2017;22(7):944–53.

    Article  CAS  PubMed  Google Scholar 

  163. Lencz T, Szeszko PR, DeRosse P, Burdick KE, Bromet EJ, Bilder RM, Malhotra AK. A schizophrenia risk gene, ZNF804A, influences neuroanatomical and neurocognitive phenotypes. Neuropsychopharmacology. 2010;35(11):2284–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mallas EJ, Carletti F, Chaddock CA, Woolley J, Picchioni MM, Shergill SS, Kane F, Allin MP, Barker GJ, Prata DP. Genome-wide discovered psychosis-risk gene ZNF804A impacts on white matter microstructure in health, schizophrenia and bipolar disorder. Peer J. 2016;4:e1570.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  165. Zhou Y, Dong F, Lanz TA, Reinhart V, Li M, Liu L, Zou J, Xi HS, Mao Y. Interactome analysis reveals ZNF804A, a schizophrenia risk gene, as a novel component of protein translational machinery critical for embryonic neurodevelopment. Mol Psychiatry. 2018;23(4):952–62.

    Article  CAS  PubMed  Google Scholar 

  166. Brodmann K. Vergleichende lokalisationslehre der grobhirnrinde. Leipzig: Barth; 1909.

    Google Scholar 

  167. Hu M, Li J, Eyler L, Guo X, Wei Q, Tang J, Liu F, He Z, Li L, Jin H, Liu Z, Wang J, Chen H, Zhao J. Decreased left middle temporal gyrus volume in antipsychotic drug-naive, first-episode schizophrenia patients and their healthy unaffected siblings. Schizophr Res. 2013;144(1–3):37–42.

    Article  PubMed  Google Scholar 

  168. Goldberg II, Harel M, Malach R. When the brain loses its self: prefrontal inactivation during sensorimotor processing. Neuron. 2006;50(2):329–39.

    Article  CAS  PubMed  Google Scholar 

  169. Li W, Qin W, Liu H, Fan L, Wang J, Jiang T, Yu C. Subregions of the human superior frontal gyrus and their connections. NeuroImage. 2013;78:46–58.

    Article  PubMed  Google Scholar 

  170. Briggs RG, Khan AB, Chakraborty AR, Abraham CJ, Anderson CD, Karas PJ, Bonney PA, Palejwala AH, Conner AK, O’Donoghue DL, Sughrue ME. Anatomy and white matter connections of the superior frontal gyrus. Clin Anat. 2019;33(6):823–32.

    Article  PubMed  Google Scholar 

  171. Picard N, Strick PL. Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex. 1996;6(3):342–53.

    Article  CAS  PubMed  Google Scholar 

  172. Fellows LK. Advances in understanding ventromedial prefrontal function: the accountant joins the executive. Neurology. 2007;68(13):991–5.

    Article  PubMed  Google Scholar 

  173. Miller EK. The prefrontal cortex and cognitive control. Nat Rev Neurosci. 2000;1(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  174. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167–202.

    Article  CAS  PubMed  Google Scholar 

  175. Duverne S, Koechlin E. Rewards and cognitive control in the human prefrontal cortex. Cereb Cortex. 2017;27(10):5024–39.

    Article  PubMed  Google Scholar 

  176. Gruber O, Chadha Santuccione A, Aach H. Magnetic resonance imaging in studying schizophrenia, negative symptoms, and the glutamate system. Front Psych. 2014;5:32.

    Google Scholar 

  177. Widge AS, Heilbronner SR, Hayden BY. Prefrontal cortex and cognitive control: new insights from human electrophysiology. F1000Res. 2019;8:F1000 Faculty Rev-1696.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Vogt BA. Midcingulate cortex: structure, connections, homologies, functions and diseases. J Chem Neuroanat. 2016;74:28–46.

    Article  CAS  PubMed  Google Scholar 

  179. Palomero-Gallagher N, Zilles K, Schleicher A, Vogt BA. Cyto- and receptor architecture of area 32 in human and macaque brains. J Comp Neurol. 2013;521(14):3272–86.

    Article  CAS  PubMed  Google Scholar 

  180. Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL. Functional-anatomic fractionation of the brain’s default network. Neuron. 2010;65(4):550–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Beckmann M, Johansen-Berg H, Rushworth MF. Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization. J Neurosci. 2009;29(4):1175–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Johansen-Berg H, Behrens TE, Robson MD, Drobnjak I, Rushworth MF, Brady JM, Smith SM, Higham DJ, Matthews PM. Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc Natl Acad Sci U S A. 2004;101(36):13335–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Sallet J, Mars RB, Noonan MP, Neubert FX, Jbabdi S, O’Reilly JX, Filippini N, Thomas AG, Rushworth MF. The organization of dorsal frontal cortex in humans and macaques. J Neurosci. 2013;33(30):12255–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. de la Vega A, Chang LJ, Banich MT, Wager TD, Yarkoni T. Large-scale meta-analysis of human medial frontal cortex reveals tripartite functional organization. J Neurosci. 2016;36(24):6553–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Denny BT, Kober H, Wager TD, Ochsner KN. A meta-analysis of functional neuroimaging studies of self- and other judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex. J Cogn Neurosci. 2012;24(8):1742–52.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Mitchell JP, Banaji MR, Macrae CN. The link between social cognition and self-referential thought in the medial prefrontal cortex. J Cogn Neurosci. 2005;17(8):1306–15.

    Article  PubMed  Google Scholar 

  187. Cavanagh JF, Shackman AJ. Frontal midline theta reflects anxiety and cognitive control: meta-analytic evidence. J Physiol Paris. 2015;109(1–3):3–15.

    Article  PubMed  Google Scholar 

  188. Lieberman MD, Eisenberger NI. The dorsal anterior cingulate cortex is selective for pain: results from large-scale reverse inference. Proc Natl Acad Sci U S A. 2015;112(49):15250–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Shackman AJ, Salomons TV, Slagter HA, Fox AS, Winter JJ, Davidson RJ. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat Rev Neurosci. 2011;12(3):154–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kim JH, Lee JM, Jo HJ, Kim SH, Lee JH, Kim ST, Seo SW, Cox RW, Na DL, Kim SI, Saad ZS. Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method. NeuroImage. 2010;49(3):2375–86.

    Article  PubMed  Google Scholar 

  191. Vorobiev V, Govoni P, Rizzolatti G, Matelli M, Luppino G. Parcellation of human mesial area 6: cytoarchitectonic evidence for three separate areas. Eur J Neurosci. 1998;10(6):2199–203.

    Article  CAS  PubMed  Google Scholar 

  192. Briggs RG, Chakraborty AR, Anderson CD, Abraham CJ, Palejwala AH, Conner AK, Pelargos PE, O’Donoghue DL, Glenn CA, Sughrue ME. Anatomy and white matter connections of the inferior frontal gyrus. Clin Anat. 2019;32(4):546–56.

    Article  PubMed  Google Scholar 

  193. Harms MP, Wang L, Campanella C, Aldridge K, Moffitt AJ, Kuelper J, Ratnanather JT, Miller MI, Barch DM, Csernansky JG. Structural abnormalities in gyri of the prefrontal cortex in individuals with schizophrenia and their unaffected siblings. Br J Psychiatry. 2010;196(2):150–7.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Lee S, Merriam A, Kim TS, Liebling M, Dickson DW, Moore GR. Cerebellar degeneration in neuroleptic malignant syndrome: neuropathologic findings and review of the literature concerning heat-related nervous system injury. J Neurol Neurosurg Psychiatry. 1989;52(3):387–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Selemon LD, Mrzljak J, Kleinman JE, Herman MM, Goldman-Rakic PS. Regional specificity in the neuropathologic substrates of schizophrenia: a morphometric analysis of Broca’s area 44 and area 9. Arch Gen Psychiatry. 2003;60(1):69–77.

    Article  PubMed  Google Scholar 

  196. Hof PR, Haroutunian V, Copland C, Davis KL, Buxbaum JD. Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem Res. 2002;27(10):1193–200.

    Article  CAS  PubMed  Google Scholar 

  197. Hof PR, Haroutunian V, Friedrich VL Jr, Byne W, Buitron C, Perl DP, Davis KL. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry. 2003;53(12):1075–85.

    Article  CAS  PubMed  Google Scholar 

  198. Das TK, Dey A, Sabesan P, Javadzadeh A, Théberge J, Radua J, Palaniyappan L. Putative astroglial dysfunction in schizophrenia: a meta-analysis of (1)H-MRS studies of medial prefrontal myo-inositol. Front Psych. 2018;9:438.

    Article  Google Scholar 

  199. Lee HJ, Preda A, Ford JM, Mathalon DH, Keator DB, van Erp TG, Turner JA, Potkin SG. Functional magnetic resonance imaging of motor cortex activation in schizophrenia. J Korean Med Sci. 2015;30(5):625–31.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Du X, Choa FS, Chiappelli J, Wisner KM, Wittenberg G, Adhikari B, Bruce H, Rowland LM, Kochunov P, Hong LE. Aberrant middle prefrontal-motor cortex connectivity mediates motor inhibitory biomarker in schizophrenia. Biol Psychiatry. 2019;85(1):49–59.

    Article  PubMed  Google Scholar 

  201. Arnold SE, Franz BR, Gur RC, Gur RE, Shapiro RM, Moberg PJ, Trojanowski JQ. Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical-hippocampal interactions. Am J Psychiatry. 1995;152(5):738–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williams, M. (2021). Frontal Cortex. In: Williams, M. (eds) The Neuropathology of Schizophrenia. Springer, Cham. https://doi.org/10.1007/978-3-030-68308-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68308-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68306-1

  • Online ISBN: 978-3-030-68308-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics