Skip to main content

Gross Pathology in Schizophrenia

  • Chapter
  • First Online:
The Neuropathology of Schizophrenia
  • 852 Accesses

Abstract

The difficulties in identifying brain pathology typical of schizophrenia are present in large-scale changes of the brain as much as in finer neuropathology, but there are several pathological findings which have become commonplace enough to be accepted as general characteristics of the disorder. Enlarged ventricles are possibly the most consistent in the illness, with imaging sciences suggesting the schizophrenic brain is smoother and lighter by a few percent. The familiar brain torque observed in healthy brains is often decreased or lost in schizophrenia, producing several theories as to the developmental cause. Whatever to complexities found in the illness in specific regions of interest, it seems that the development of schizophrenia leaves its mark global on pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kraepelin E. Dementia praecox and paraphrenia. Edinburgh: Livingstone; 1919.

    Google Scholar 

  2. Moore M, Nathan D, Elliot A, Laubach C. Encephalographic studies in mental disease. Am J Psychiatry. 1935;92:43–67.

    Article  Google Scholar 

  3. Haug JO. Pneumoencephalographic studies in mental disease. Acta Psychiatr Scand Suppl. 1962;38(165):1–104.

    CAS  PubMed  Google Scholar 

  4. Danos P, Baumann B, Bernstein HG, Stauch R, Krell D, Falkai P, Bogerts B. The ventral lateral posterior nucleus of the thalamus in schizophrenia: a post-mortem study. Psychiatry Res. 2002;114(1):1–9.

    Article  PubMed  Google Scholar 

  5. Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res. 2001;49(1–2):1–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. DeLisi LE. Defining the course of brain structural change and plasticity in schizophrenia. Psychiatry Res. 1999;92(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  7. DeLisi LE, Szulc KU, Bertisch HC, Majcher M, Brown K. Understanding structural brain changes in schizophrenia. Dialogues Clin Neurosci. 2006;8(1):71–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Smith RC, Calderon M, Ravichandran GK, Largen J, Vroulis G, Shvartsburd A, Gordon J, Schoolar JC. Nuclear magnetic resonance in schizophrenia: a preliminary study. Psychiatry Res. 1984;12(2):137–47.

    Article  CAS  PubMed  Google Scholar 

  9. Haijma SV, Van Haren N, Cahn W, Koolschijn PC, Hulshoff Pol HE, Kahn RS. Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophr Bull. 2013;39(5):1129–38.

    Article  PubMed  Google Scholar 

  10. Harrison PJ, Freemantle N, Geddes JR. Meta-analysis of brain weight in schizophrenia. Schizophr Res. 2003;64(1):25–34.

    Article  PubMed  Google Scholar 

  11. Crow T. Review: brain weight is reduced in people with schizophrenia. Evid Based Ment Health. 2004;7(2):57.

    Article  PubMed  Google Scholar 

  12. Brans RG, van Haren NE, van Baal GC, Schnack HG, Kahn RS, Hulshoff Pol HE. Heritability of changes in brain volume over time in twin pairs discordant for schizophrenia. Arch Gen Psychiatry. 2008;65(11):1259–68.

    Article  PubMed  Google Scholar 

  13. Hedman AM, van Haren NE, van Baal GC, Brans RG, Hijman R, Kahn RS, Hulshoff Pol HE. Is there change in intelligence quotient in chronically ill schizophrenia patients? A longitudinal study in twins discordant for schizophrenia. Psychol Med. 2012;42(12):2535–41.

    Article  CAS  PubMed  Google Scholar 

  14. Hedman AM, van Haren NEM, van Baal GCM, Brouwer RM, Brans RGH, Schnack HG, Kahn RS, Hulshoff Pol HE. Heritability of cortical thickness changes over time in twin pairs discordant for schizophrenia. Schizophr Res. 2016;173(3):192–9.

    Article  PubMed  Google Scholar 

  15. Hulshoff Pol HE, Brans RG, van Haren NE, Schnack HG, Langen M, Baaré WF, van Oel CJ, Kahn RS. Gray and white matter volume abnormalities in monozygotic and same-gender dizygotic twins discordant for schizophrenia. Biol Psychiatry. 2004;55(2):126–30.

    Article  PubMed  Google Scholar 

  16. Hulshoff Pol HE, Schnack HG, Mandl RC, Brans RG, van Haren NE, Baaré WF, van Oel CJ, Collins DL, Evans AC, Kahn RS. Gray and white matter density changes in monozygotic and same-sex dizygotic twins discordant for schizophrenia using voxel-based morphometry. NeuroImage. 2006;31(2):482–8.

    Article  PubMed  Google Scholar 

  17. Hulshoff Pol HE, van Baal GC, Schnack HG, Brans RG, van der Schot AC, Brouwer RM, van Haren NE, Lepage C, Collins DL, Evans AC, Boomsma DI, Nolen W, Kahn RS. Overlapping and segregating structural brain abnormalities in twins with schizophrenia or bipolar disorder. Arch Gen Psychiatry. 2012;69(4):349–59.

    Article  PubMed  Google Scholar 

  18. Suddath RL, Christison GW, Torrey EF, Casanova MF, Weinberger DR. Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med. 1990;322(12):789–94.

    Article  CAS  PubMed  Google Scholar 

  19. van Haren NE, Picchioni MM, McDonald C, Marshall N, Davis N, Ribchester T, Hulshoff Pol HE, Sharma T, Sham P, Kahn RS, Murray R. A controlled study of brain structure in monozygotic twins concordant and discordant for schizophrenia. Biol Psychiatry. 2004;56(6):454–61.

    Article  PubMed  Google Scholar 

  20. Jacobi W, Winkler H. Encephalographische studien an chronische schizophrenen. Archiv Psychiat Nervenkrankheiten. 1927;81:299–332.

    Google Scholar 

  21. Johnstone EC, Crow TJ, Frith CD, Husband J, Kreel L. Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet. 1976;2(7992):924–6.

    Article  CAS  PubMed  Google Scholar 

  22. Brown R, Colter N, Corsellis JA, Crow TJ, Frith CD, Jagoe R, Johnstone EC, Marsh L. Postmortem evidence of structural brain changes in schizophrenia. Differences in brain weight, temporal horn area, and parahippocampal gyrus compared with affective disorder. Arch Gen Psychiatry. 1986;43(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka Y, Hazama H, Kawahara R, Kobayashi K. Computerized tomography of the brain in schizophrenic patients. A controlled study. Acta Psychiatr Scand. 1981;63(3):191–7.

    Article  CAS  PubMed  Google Scholar 

  24. Weinberger DR, Torrey EF, Neophytides AN, Wyatt RJ. Lateral cerebral ventricular enlargement in chronic schizophrenia. Arch Gen Psychiatry. 1979a;36(7):735–9.

    Article  CAS  PubMed  Google Scholar 

  25. Weinberger DR, Torrey EF, Neophytides AN, Wyatt RJ. Structural abnormalities in the cerebral cortex of chronic schizophrenic patients. Arch Gen Psychiatry. 1979b;36(9):935–9.

    Article  CAS  PubMed  Google Scholar 

  26. Flaum M, O’Leary DS, Swayze VW 2nd, Miller DD, Arndt S, Andreasen NC. Symptom dimensions and brain morphology in schizophrenia and related psychotic disorders. J Psychiatr Res. 1995;29(4):261–76.

    Article  CAS  PubMed  Google Scholar 

  27. Becker T, Elmer K, Schneider F, Schneider M, Grodd W, Bartels M, Heckers S, Beckmann H. Confirmation of reduced temporal limbic structure volume on magnetic resonance imaging in male patients with schizophrenia. Psychiatry Res. 1996;67(2):135–43.

    Article  CAS  PubMed  Google Scholar 

  28. Del Re EC, Konishi J, Bouix S, Blokland GA, Mesholam-Gately RI, Goldstein J, Kubicki M, Wojcik J, Pasternak O, Seidman LJ, Petryshen T, Hirayasu Y, Niznikiewicz M, Shenton ME, McCarley RW. Enlarged lateral ventricles inversely correlate with reduced corpus callosum central volume in first episode schizophrenia: association with functional measures. Brain Imaging Behav. 2016;10(4):1264–73.

    Article  PubMed  PubMed Central  Google Scholar 

  29. DeLisi LE, Sakuma M, Tew W, Kushner M, Hoff AL, Grimson R. Schizophrenia as a chronic active brain process: a study of progressive brain structural change subsequent to the onset of schizophrenia. Psychiatry Res. 1997;74(3):129–40.

    Article  CAS  PubMed  Google Scholar 

  30. Konishi J, Del Re EC, Bouix S, Blokland GAM, Mesholam-Gately R, Woodberry K, Niznikiewicz M, Goldstein J, Hirayasu Y, Petryshen TL, Seidman LJ, Shenton ME, McCarley RW. Abnormal relationships between local and global brain measures in subjects at clinical high risk for psychosis: a pilot study. Brain Imaging Behav. 2018;12(4):974–88.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Koo MS, Dickey CC, Park HJ, Kubicki M, Ji NY, Bouix S, Pohl KM, Levitt JJ, Nakamura M, Shenton ME, McCarley RW. Smaller neocortical gray matter and larger sulcal cerebrospinal fluid volumes in neuroleptic-naive women with schizotypal personality disorder. Arch Gen Psychiatry. 2006;63(10):1090–100.

    Article  PubMed  Google Scholar 

  32. McCarley RW, Wible CG, Frumin M, Hirayasu Y, Levitt JJ, Fischer IA, Shenton ME. MRI anatomy of schizophrenia. Biol Psychiatry. 1999;45(9):1099–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Narr KL, Thompson PM, Sharma T, Moussai J, Cannestra AF, Toga AW. Mapping morphology of the corpus callosum in schizophrenia. Cereb Cortex. 2000;10(1):40–9.

    Article  CAS  PubMed  Google Scholar 

  34. Schwarzkopf SB, Olson SC, Coffman JA, Nasrallah HA. Third and lateral ventricular volumes in schizophrenia: support for progressive enlargement of both structures. Psychopharmacol Bull. 1990;26(3):385–91.

    CAS  PubMed  Google Scholar 

  35. Waddington JL, Youssef HA, Farrell MA, Toland J. Initial ‘schizophrenia-like’ psychosis in Pick’s disease: case study with neuroimaging and neuropathology, and implications for frontotemporal dysfunction in schizophrenia. Schizophr Res. 1995;18(1):79–82.

    Article  CAS  PubMed  Google Scholar 

  36. Wexler BE, Zhu H, Bell MD, Nicholls SS, Fulbright RK, Gore JC, Colibazzi T, Amat J, Bansal R, Peterson BS. Neuropsychological near normality and brain structure abnormality in schizophrenia. Am J Psychiatry. 2009;166(2):189–95.

    Article  PubMed  Google Scholar 

  37. Wobrock T, Gruber O, Schneider-Axmann T, Wölwer W, Gaebel W, Riesbeck M, Maier W, Klosterkötter J, Schneider F, Buchkremer G, Möller HJ, Schmitt A, Bender S, Schlösser R, Falkai P. Internal capsule size associated with outcome in first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2009;259(5):278–83.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Crichton-Browne J. On the weight of the brain and its component parts in the insane. Brain. 1879;2:42–67.

    Article  Google Scholar 

  39. Wigan A. A new view of insanity: the duality of mind. London: Longman; 1844.

    Google Scholar 

  40. Falkai P, Schneider T, Greve B, Klieser E, Bogerts B. Reduced frontal and occipital lobe asymmetry on the CT-scans of schizophrenic patients. Its specificity and clinical significance. J Neural Transm Gen Sect. 1995b;99(1–3):63–77.

    Article  CAS  PubMed  Google Scholar 

  41. Le May M, Kido DK. Asymmetries of the cerebral hemispheres on computed tomograms. J Comput Assist Tomogr. 1978;2(4):471–6.

    Article  PubMed  Google Scholar 

  42. Weinberger DR, Luchins DJ, Morihisa J, Wyatt RJ. Asymmetrical volumes of the right and left frontal and occipital regions of the human brain. Ann Neurol. 1982;11(1):97–100.

    Article  CAS  PubMed  Google Scholar 

  43. Weinberger DR, Wagner RL, Wyatt RJ. Neuropathological studies of schizophrenia: a selective review. Schizophr Bull. 1983;9(2):193–212.

    Article  CAS  PubMed  Google Scholar 

  44. Ribolsi M, Daskalakis ZJ, Siracusano A, Koch G. Abnormal asymmetry of brain connectivity in schizophrenia. Front Hum Neurosci. 2014;8:1010.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Luchins DJ, Weinberger DR, Wyatt RJ. Schizophrenia: evidence of a subgroup with reversed cerebral asymmetry. Arch Gen Psychiatry. 1979;36(12):1309–11.

    Article  CAS  PubMed  Google Scholar 

  46. Falkai P, Bogerts B, Schneider T, Greve B, Pfeiffer U, Pilz K, Gonsiorzcyk C, Majtenyi C, Ovary I. Disturbed planum temporale asymmetry in schizophrenia. A quantitative post-mortem study. Schizophr Res. 1995a;14(2):161–76.

    Article  CAS  PubMed  Google Scholar 

  47. Honer WG, Bassett AS, Squires-Wheeler E, Falkai P, Smith GN, Lapointe JS, Canero C, Lang DJ. The temporal lobes, reversed asymmetry and the genetics of schizophrenia. Neuroreport. 1995;7(1):221–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao L, Hietala J, Tohka J. Shape analysis of human brain interhemispheric fissure bending in MRI. Med Image Comput Comput Assist Interv. 2009;12(Pt 2):216–23.

    PubMed  Google Scholar 

  49. Bracha HS. Etiology of structural asymmetry in schizophrenia: an alternative hypothesis. Schizophr Bull. 1991;17(4):551–3.

    Article  CAS  PubMed  Google Scholar 

  50. DeLisi LE. The concept of progressive brain change in schizophrenia: implications for understanding schizophrenia. Schizophr Bull. 2008;34(2):312–21.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Núñez C, Paipa N, Senior C, Coromina M, Siddi S, Ochoa S, Brébion G, Stephan-Otto C. Global brain asymmetry is increased in schizophrenia and related to avolition. Acta Psychiatr Scand. 2017;135(5):448–59.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Roberts GW. Schizophrenia: a neuropathological perspective. Br J Psychiatry. 1991;158:8–17.

    Article  CAS  PubMed  Google Scholar 

  53. Roberts GW, Royston MC, Götz M. Pathology of cortical development and neuropsychiatric disorders. Ciba Found Symp. 1995;193:296–321.

    CAS  PubMed  Google Scholar 

  54. Berlim MT, Mattevi BS, Belmonte-de-Abreu P, Crow TJ. The etiology of schizophrenia and the origin of language: overview of a theory. Compr Psychiatry. 2003;44(1):7–14.

    Article  PubMed  Google Scholar 

  55. Crow TJ. Temporal lobe asymmetries as the key to the etiology of schizophrenia. Schizophr Bull. 1990;16(3):433–43.

    Article  CAS  PubMed  Google Scholar 

  56. Crow TJ. Schizophrenia as failure of hemispheric dominance for language. Trends Neurosci. 1997;20(8):339–43.

    CAS  PubMed  Google Scholar 

  57. Hinzen W, Rosselló J. The linguistics of schizophrenia: thought disturbance as language pathology across positive symptoms. Front Psychol. 2015;6:971.

    PubMed  PubMed Central  Google Scholar 

  58. Mitchell RL, Crow TJ. Right hemisphere language functions and schizophrenia: the forgotten hemisphere? Brain. 2005;128(Pt 5):963–78.

    Article  PubMed  Google Scholar 

  59. Murphy E, Benítez-Burraco A. Bridging the gap between genes and language deficits in schizophrenia: an Oscillopathic approach. Front Hum Neurosci. 2016;10:422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Birkett P, Clegg J, Bhaker R, Lee KH, Mysore A, Parks R, Woodruff P. Schizophrenia impairs phonological speech production: a preliminary report. Cogn Neuropsychiatry. 2011;16(1):40–9.

    Article  PubMed  Google Scholar 

  61. Kuperberg GR. Language in schizophrenia part 1: an introduction. Lang Linguist Compass. 2010a;4(8):576–89.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kuperberg GR. Language in schizophrenia Part 2: what can psycholinguistics bring to the study of schizophrenia...and vice versa? Lang Linguist Compass. 2010b;4(8):590–604.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Thermenos HW, Whitfield-Gabrieli S, Seidman LJ, Kuperberg G, Juelich RJ, Divatia S, Riley C, Jabbar GA, Shenton ME, Kubicki M, Manschreck T, Keshavan MS, DeLisi LE. Altered language network activity in young people at familial high-risk for schizophrenia. Schizophr Res. 2013;151(1–3):229–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. de Boer JN, van Hoogdalem M, Mandl RCW, Brummelman J, Voppel AE, Begemann MJH, van Dellen E, Wijnen FNK, Sommer IEC. Language in schizophrenia: relation with diagnosis, symptomatology and white matter tracts. NPJ Schizophr. 2020;6(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sun Y, Chen Y, Collinson SL, Bezerianos A, Sim K. Reduced hemispheric asymmetry of brain anatomical networks is linked to schizophrenia: a Connectome study. Cereb Cortex. 2017;27(1):602–15.

    PubMed  Google Scholar 

  66. Glasel H, Leroy F, Dubois J, Hertz-Pannier L, Mangin JF, Dehaene-Lambertz G. A robust cerebral asymmetry in the infant brain: the rightward superior temporal sulcus. NeuroImage. 2011;58(3):716–23.

    Article  CAS  PubMed  Google Scholar 

  67. Maller JJ, Anderson RJ, Thomson RH, Daskalakis ZJ, Rosenfeld JV, Fitzgerald PB. Occipital bending in schizophrenia. Aust N Z J Psychiatry. 2017;51(1):32–41.

    Article  PubMed  Google Scholar 

  68. Pepe A, Zhao L, Koikkalainen J, Hietala J, Ruotsalainen U, Tohka J. Automatic statistical shape analysis of cerebral asymmetry in 3D T1-weighted magnetic resonance images at vertex-level: application to neuroleptic-naïve schizophrenia. Magn Reson Imaging. 2013;31(5):676–87.

    Article  PubMed  Google Scholar 

  69. Degreef G, Ashtari M, Bogerts B, Bilder RM, Jody DN, Alvir JM, Lieberman JA. Volumes of ventricular system subdivisions measured from magnetic resonance images in first-episode schizophrenic patients. Arch Gen Psychiatry. 1992;49(7):531–7.

    Article  CAS  PubMed  Google Scholar 

  70. Lim KO, Sullivan EV, Zipursky RB, Pfefferbaum A. Cortical gray matter volume deficits in schizophrenia: a replication. Schizophr Res. 1996a;20(1–2):157–64.

    Article  CAS  PubMed  Google Scholar 

  71. Lim KO, Tew W, Kushner M, Chow K, Matsumoto B, DeLisi LE. Cortical gray matter volume deficit in patients with first-episode schizophrenia. Am J Psychiatry. 1996b;153(12):1548–53.

    Article  CAS  PubMed  Google Scholar 

  72. Whitworth AB, Honeder M, Kremser C, Kemmler G, Felber S, Hausmann A, Wanko C, Wechdorn H, Aichner F, Stuppaeck CH, Fleischhacker WW. Hippocampal volume reduction in male schizophrenic patients. Schizophr Res. 1998;31(2–3):73–81.

    Article  CAS  PubMed  Google Scholar 

  73. Zipursky RB, Lambe EK, Kapur S, Mikulis DJ. Cerebral gray matter volume deficits in first episode psychosis. Arch Gen Psychiatry. 1998a;55(6):540–6.

    Article  CAS  PubMed  Google Scholar 

  74. Zipursky RB, Zhang-Wong J, Lambe EK, Bean G, Beiser M. MRI correlates of treatment response in first episode psychosis. Schizophr Res. 1998b;30(1):81–90.

    Article  CAS  PubMed  Google Scholar 

  75. Williams MR, Chaudhry R, Perera S, Pearce RK, Hirsch SR, Ansorge O, Thom M, Maier M. Changes in cortical thickness in the frontal lobes in schizophrenia are a result of thinning of pyramidal cell layers. Eur Arch Psychiatry Clin Neurosci. 2013;263(1):25–39.

    Article  CAS  PubMed  Google Scholar 

  76. Zipursky RB, Lim KO, Sullivan EV, Brown BW, Pfefferbaum A. Widespread cerebral gray matter volume deficits in schizophrenia. Arch Gen Psychiatry. 1992;49(3):195–205.

    Article  CAS  PubMed  Google Scholar 

  77. Palaniyappan L, Maayan N, Bergman H, Davenport C, Adams CE, Soares-Weiser K. Voxel-based morphometry for separation of schizophrenia from other types of psychosis in first episode psychosis. Cochrane Database Syst Rev. 2015a;8:CD011021.

    Google Scholar 

  78. Lauer M, Senitz D, Beckmann H. Increased volume of the nucleus accumbens in schizophrenia. J Neural Transm (Vienna). 2001;108(6):645–60.

    Article  CAS  Google Scholar 

  79. Lesch A, Bogerts B. The diencephalon in schizophrenia: evidence for reduced thickness of the periventricular grey matter. Eur Arch Psychiatry Neurol Sci. 1984;234(4):212–9.

    Article  CAS  PubMed  Google Scholar 

  80. Selemon LD, Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry. 1999;45(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  81. Torrey EF, Taylor EH, Bracha HS, Bowler AE, McNeil TF, Rawlings RR, Quinn PO, Bigelow LB, Rickler K, Sjostrom K. Prenatal origin of schizophrenia in a subgroup of discordant monozygotic twins. Schizophr Bull. 1994;20(3):423–32.

    Article  CAS  PubMed  Google Scholar 

  82. Guo S, Iwabuchi S, Balain V, Feng J, Liddle P, Palaniyappan L. Cortical folding and the potential for prognostic neuroimaging in schizophrenia. Br J Psychiatry. 2015;207(5):458–9.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Palaniyappan L, Park B, Balain V, Dangi R, Liddle P. Abnormalities in structural covariance of cortical gyrification in schizophrenia. Brain Struct Funct. 2015b;220(4):2059–71.

    Article  CAS  PubMed  Google Scholar 

  84. Williams MR, Pearce RKB, Hirsch SR, Ansorge O, Thom M, Maier M. The subgenual cingulate gyrus exhibits lower rates of bifurcation in schizophrenia than in controls, bipolar disorder and depression. Open J Psychiatry. 2012;2(4):253–7.

    Article  Google Scholar 

  85. Fatemi SH, Folsom TD. The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull. 2009;35(3):528–48.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jarskog LF, Miyamoto S, Lieberman JA. Schizophrenia: new pathological insights and therapies. Annu Rev Med. 2007;58:49–61.

    Article  CAS  PubMed  Google Scholar 

  87. Murray RM, Bhavsar V, Tripoli G, Howes O. 30 years on: how the neurodevelopmental hypothesis of schizophrenia morphed into the developmental risk factor model of psychosis. Schizophr Bull. 2017;43(6):1190–6.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Owen MJ, O’Donovan MC. Schizophrenia and the neurodevelopmental continuum:evidence from genomics. World Psychiatry. 2017;16(3):227–35.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Piper M, Beneyto M, Burne TH, Eyles DW, Lewis DA, McGrath JJ. The neurodevelopmental hypothesis of schizophrenia: convergent clues from epidemiology and neuropathology. Psychiatr Clin North Am. 2012;35(3):571–84.

    Article  PubMed  Google Scholar 

  90. Guilarte TR. TSPO in diverse CNS pathologies and psychiatric disease: a critical review and a way forward. Pharmacol Ther. 2019;194:44–58.

    Article  CAS  PubMed  Google Scholar 

  91. Costa B, Da Pozzo E, Martini C. 18-kDa translocator protein association complexes in the brain: from structure to function. Biochem Pharmacol. 2020;177:114015.

    Article  CAS  PubMed  Google Scholar 

  92. Milenkovic VM, Rupprecht R, Wetzel CH. The translocator protein 18 kDa (TSPO) and its role in mitochondrial biology and psychiatric disorders. Mini Rev Med Chem. 2015;15(5):366–72.

    Article  CAS  PubMed  Google Scholar 

  93. Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, Groyer G, Adams D, Schumacher M. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov. 2010;9(12):971–88.

    Article  CAS  PubMed  Google Scholar 

  94. Yao R, Pan R, Shang C, Li X, Cheng J, Xu J, Li Y. Translocator protein 18 kDa (TSPO) deficiency inhibits microglial activation and impairs mitochondrial function. Front Pharmacol. 2020;11:986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ritsner M, Modai I, Gibel A, Leschiner S, Silver H, Tsinovoy G, Weizman A, Gavish M. Decreased platelet peripheral-type benzodiazepine receptors in persistently violent schizophrenia patients. J Psychiatr Res. 2003;37(6):549–56.

    Article  PubMed  Google Scholar 

  96. Lara DR, Gama CS, Belmonte-de-Abreu P, Portela LV, Gonçalves CA, Fonseca M, Hauck S, Souza DO. Increased serum S100B protein in schizophrenia: a study in medication-free patients. J Psychiatr Res. 2001;35(1):11–4.

    Article  CAS  PubMed  Google Scholar 

  97. Manev H, Manev R. S100B: an old neurotrophic factor with putative new roles in psychiatric illnesses. J Psychiatr Res. 2001;35:347–50.

    Article  CAS  PubMed  Google Scholar 

  98. Rothermundt M, Missler U, Arolt V, Peters M, Leadbeater J, Wiesmann M, Rudolf S, Wandinger KP, Kirchner H. Increased S100B blood levels in unmedicated and treated schizophrenic patients are correlated with negative symptomatology. Mol Psychiatry. 2001;6(4):445–9.

    Article  CAS  PubMed  Google Scholar 

  99. Schmitt A, Bertsch T, Henning U, Tost H, Klimke A, Henn FA, Falkai P. Increased serum S100B in elderly, chronic schizophrenic patients: negative correlation with deficit symptoms. Schizophr Res. 2005;80(2–3):305–13.

    Article  PubMed  Google Scholar 

  100. Schroeter ML, Abdul-Khaliq H, Frühauf S, Höhne R, Schick G, Diefenbacher A, Blasig IE. Serum S100B is increased during early treatment with antipsychotics and in deficit schizophrenia. Schizophr Res. 2003;62(3):231–6.

    Article  PubMed  Google Scholar 

  101. Steiner J, Bogerts B, Schroeter ML, Bernstein HG. S100B protein in neurodegenerative disorders. Clin Chem Lab Med. 2011;49(3):409–24.

    Article  CAS  PubMed  Google Scholar 

  102. Steiner J, Schroeter ML, Schiltz K, Bernstein HG, Müller UJ, Richter-Landsberg C, Müller WE, Walter M, Gos T, Bogerts B, Keilhoff G. Haloperidol and clozapine decrease S100B release from glial cells. Neuroscience. 2010a;167(4):1025–31.

    Article  CAS  PubMed  Google Scholar 

  103. Steiner J, Walter M, Guest P, Myint AM, Schiltz K, Panteli B, Brauner M, Bernstein HG, Gos T, Herberth M, Schroeter ML, Schwarz MJ, Westphal S, Bahn S, Bogerts B. Elevated S100B levels in schizophrenia are associated with insulin resistance. Mol Psychiatry. 2010b;15(1):3–4.

    Article  CAS  PubMed  Google Scholar 

  104. Rothermundt M, Falkai P, Ponath G, Abel S, Bürkle H, Diedrich M, Hetzel G, Peters M, Siegmund A, Pedersen A, Maier W, Schramm J, Suslow T, Ohrmann P, Arolt V. Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol Psychiatry. 2004;9(10):897–9.

    Article  CAS  PubMed  Google Scholar 

  105. Peng S, Li W, Lv L, Zhang Z, Zhan X. BDNF as a biomarker in diagnosis and evaluation of treatment for schizophrenia and depression. Discov Med. 2018;26(143):127–36.

    PubMed  Google Scholar 

  106. Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci. 2015;11(6):1164–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors. 2004;22(3):123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bothwell M. Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci. 1995;18:223–53.

    Article  CAS  PubMed  Google Scholar 

  109. Klein R, Conway D, Parada LF, Barbacid M. The trkB tyrosine protein kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain. Cell. 1990;61(4):647–56.

    Article  CAS  PubMed  Google Scholar 

  110. Klein R, Nanduri V, Jing SA, Lamballe F, Tapley P, Bryant S, Cordon-Cardo C, Jones KR, Reichardt LF, Barbacid M. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell. 1991;66(2):395–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Thomas K, Davies A. Neurotrophins: a ticket to ride for BDNF. Curr Biol. 2005;15(7):R262–4.

    Article  CAS  PubMed  Google Scholar 

  112. Green MJ, Matheson SL, Shepherd A, Weickert CS, Carr VJ. Brain-derived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis. Mol Psychiatry. 2011;16(9):960–72.

    Article  CAS  PubMed  Google Scholar 

  113. Cui H, Jin Y, Wang J, Weng X, Li C. Serum brain-derived neurotrophic factor (BDNF) levels in schizophrenia: a systematic review. Shanghai Arch Psychiatry. 2012;24(5):250–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Grillo RW, Ottoni GL, Leke R, Souza DO, Portela LV, Lara DR. Reduced serum BDNF levels in schizophrenic patients on clozapine or typical antipsychotics. J Psychiatr Res. 2007;41(1–2):31–5.

    Article  PubMed  Google Scholar 

  115. Shimizu E, Hashimoto K, Watanabe H, Komatsu N, Okamura N, Koike K, Shinoda N, Nakazato M, Kumakiri C, Okada S, Iyo M. Serum brain-derived neurotrophic factor (BDNF) levels in schizophrenia are indistinguishable from controls. Neurosci Lett. 2003;351(2):111–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williams, M. (2021). Gross Pathology in Schizophrenia. In: Williams, M. (eds) The Neuropathology of Schizophrenia. Springer, Cham. https://doi.org/10.1007/978-3-030-68308-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68308-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68306-1

  • Online ISBN: 978-3-030-68308-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics