Skip to main content

Refinery Profit Planning via Evolutionary Many-Objective Optimization

  • Chapter
  • First Online:
Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough

Part of the book series: Studies in Computational Intelligence ((SCI,volume 956))

  • 674 Accesses

Abstract

Evolutionary multi-objective optimization (EMO) found applications in all fields of science and engineering. Chemical engineering discipline is no exception. Literature abounds on EMO with a variety of algorithms proposed by a few dedicated researchers. The Nondominated Sorting Genetic Algorithm (NSGA-III) is the latest addition to the family of EMO. NSGA-III claims to have solved multi and many-objective optimization problems up to 15 objective functions. On the other hand, during the last 2 decades, chemical engineering has witnessed many applications of multi-objective optimization algorithms such as NSGA-II. In a first-of-its-kind study, this paper exploits the power and versatility of the NSGA-III to solve a four-objective optimization problem occurring in refinery profit planning. NSGA-III is eminently suitable for this class of problems. We applied NSGA-III to this problem and obtained the full set of pareto solutions for the four-objective problem. We also observed that they are dominated solutions when compared to the FNLGP and others. The ratio of HV/IGD was proposed to measure the quality of the solutions obtained in a run. It can be applied to solve other many-objective optimization problems in Chemical Engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, D.H.: Linear programming models for plant operations planning. British. Chem. Eng. 16, 685–691 (1971)

    Google Scholar 

  2. Ravi, V., Reddy, P.J.: Fuzzy linear fractional goal programming applied to refinery operations planning. Fuzzy Sets Syst. 96, 173–182 (1998)

    Article  Google Scholar 

  3. Ravi, V., Reddy, P.J., Dutta, D.: Application of Fuzzy nonlinear goal programming to a refinery model. Comput. Chem. Eng. 22, 709–712 (1998)

    Article  Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  5. Deb, K., Jain, H.: An Evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18, 577–601 (2014)

    Article  Google Scholar 

  6. Reddy, P.S., Rani, K.Y., Patwardhan, S.C.: Multi-objective optimization of a reactive batch distillation process using reduced order model. Comput. Chem. Eng. 106, 40–56 (2017)

    Article  Google Scholar 

  7. Hemalatha, K., Nagveni, P., Kumar, P.N., Rani, K.Y.: Multiobjective optimization and experimental validation for batch cooling crystallization of citric acid anhydrate. Comput. Chem. Eng. 112, 292–303 (2018)

    Article  Google Scholar 

  8. Rangaiah, G.P., Sharma, S., Sreepathi, B.K.: Multi-objective optimization for the design and operation of energy efficient chemical process and power generation. Curr. Opin. Chemcial Eng. 10, 49–62 (2015)

    Article  Google Scholar 

  9. Seinfeld, J.H., McBride, W.L.: Optimization with multiple criteria: application to minimization of parameter sensitivities in a refinery model. Ind. Eng. Chem. Process Des. Dev. 9(1), 53–57 (1970)

    Article  Google Scholar 

  10. Suman, B.: Study of self-stopping PDMOSA and performance measure in multiobjective optimization. Comput. Chem. Eng. 29, 1131–1147 (2005)

    Article  Google Scholar 

  11. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithm research: a history and analysis. Air Force Institute of Technology, Wright- Patterson AFB, Ohio, TR-98-03 (1998)

    Google Scholar 

  12. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans. Evol, Comput (1999)

    Google Scholar 

  13. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Difficulties in specifying reference points to calculate the inverted generational distance for many-objective optimization problems. In: 2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadlamani Ravi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madhav, V., Huq, S.TU., Ravi, V. (2021). Refinery Profit Planning via Evolutionary Many-Objective Optimization. In: Gunjan, V.K., Zurada, J.M. (eds) Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough. Studies in Computational Intelligence, vol 956. Springer, Cham. https://doi.org/10.1007/978-3-030-68291-0_3

Download citation

Publish with us

Policies and ethics