Skip to main content

User Perception of Text-Based Chatbot Personality

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12604)


This work explores the effect of chatbot personality on user experience and investigates how users perceive agent personality when conveyed through text. Building on previous work in the field of human-computer interaction on designing chatbot personality, we investigate whether users in a low-stakes conversation have a preference for a specific personality type when the agent does not use voice, is not visually represented, and does not provide identity cues such as gender. We developed two chatbots that interact with users in a multi-turn conversation and designed them to have distinct personalities along two axes of the Five Factor Model (extraversion and agreeableness). We conducted a user study to evaluate user engagement, user perception of the agents, and the effect of user personality on user experience.


  • Conversational agent
  • Chatbot
  • Personality
  • User experience
  • HCI

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. 1.


  2. 2.

    Beauty recommendation chatbots:

  3. 3.

    CNN Chatbot:

  4. 4.

    Weather chatbots:

  5. 5.


  6. 6.

    Microsoft Bot Framework:

  7. 7.

  8. 8.

    The bots were called Makoto and Nasoto. Makoto is an ungendered Japanese name, and Nasoto is a non-word. These names are culturally distant from the cultural background of our sample and thus unlikely to be readily associated with a specific gender, age-group, or other identity.

  9. 9.

    Natural Language Toolkit:


  1. Allbeck, J., Badler, N.: Toward representing agent behaviors modified by personality and emotion. Embod. Convers. Agents AAMAS 2, 15–19 (2002)

    Google Scholar 

  2. Berry, D.S., Pennebaker, J.W., Mueller, J.S., Hiller, W.S.: Linguistic bases of social perception. Pers. Soc. Psychol. Bull. 23(5), 526–537 (1997)

    CrossRef  Google Scholar 

  3. Dewaele, J.M., Furnham, A.: Extraversion: the unloved variable in applied linguistic research. Lang. Learn. 49(3), 509–544 (1999)

    CrossRef  Google Scholar 

  4. Faur, C., Clavel, C., Pesty, S., Martin, J.C.: PERSEED: a self-based model of personality for virtual agents inspired by socio-cognitive theories. In: 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, pp. 467–472. IEEE (2013)

    Google Scholar 

  5. Gill, A.J., Oberlander, J.: Taking care of the linguistic features of extraversion. In: Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 24 (2002)

    Google Scholar 

  6. Hanna, N., Richards, D., et al.: Do birds of a feather work better together? the impact of virtual agent personality on a shared mental model with humans during collaboration. In: COOS@ AAMAS, pp. 28–37 (2015)

    Google Scholar 

  7. Holtgraves, T.: Text messaging, personality, and the social context. J. Res. Pers. 45(1), 92–99 (2011)

    CrossRef  Google Scholar 

  8. Isbister, K., Nass, C.: Consistency of personality in interactive characters: verbal cues, non-verbal cues, and user characteristics. Int. J. Hum. Comput. Stud. 53(2), 251–267 (2000)

    CrossRef  Google Scholar 

  9. John, O.P., Srivastava, S., et al.: The big five trait taxonomy: history, measurement, and theoretical perspectives. Handb. Pers. Theor. Res. 2(1999), 102–138 (1999)

    Google Scholar 

  10. Kang, S.-H., Gratch, J., Wang, N., Watt, J.H.: Agreeable people like agreeable virtual humans. In: Prendinger, H., Lester, J., Ishizuka, M. (eds.) IVA 2008. LNCS (LNAI), vol. 5208, pp. 253–261. Springer, Heidelberg (2008).

    CrossRef  Google Scholar 

  11. Lee, K.M., Nass, C.: Social-psychological origins of feelings of presence: Creating social presence with machine-generated voices. Med. Psychol. 7(1), 31–45 (2005)

    CrossRef  Google Scholar 

  12. Liew, T.W., Tan, S.M.: Virtual agents with personality: adaptation of learner-agent personality in a virtual learning environment. In: 2016 Eleventh International Conference on Digital Information Management, pp. 157–162. IEEE (2016)

    Google Scholar 

  13. Liu, K., Tolins, J., Tree, J.E.F., Neff, M., Walker, M.A.: Two techniques for assessing virtual agent personality. IEEE Trans. Affect. Comput. 7(1), 94–105 (2015)

    CrossRef  Google Scholar 

  14. Luger, E., Sellen, A.: Like having a really bad pa: the gulf between user expectation and experience of conversational agents. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 5286–5297. ACM (2016)

    Google Scholar 

  15. Ma, X., Yang, E., Fung, P.: Exploring perceived emotional intelligence of personality-driven virtual agents in handling user challenges. In: The World Wide Web Conference, pp. 1222–1233 (2019)

    Google Scholar 

  16. Mairesse, F., Walker, M.A., Mehl, M.R., Moore, R.K.: Using linguistic cues for the automatic recognition of personality in conversation and text. J. Artif. Intell. Res. 30, 457–500 (2007)

    CrossRef  Google Scholar 

  17. McRorie, M., Sneddon, I., de Sevin, E., Bevacqua, E., Pelachaud, C.: A model of personality and emotional traits. In: Ruttkay, Z., Kipp, M., Nijholt, A., Vilhjálmsson, H.H. (eds.) IVA 2009. LNCS (LNAI), vol. 5773, pp. 27–33. Springer, Heidelberg (2009).

    CrossRef  Google Scholar 

  18. Moon, Y., Nass, C.I.: Adaptive agents and personality change: complementarity versus similarity as forms of adaptation. In: Conference Companion on Human Factors in Computing Systems, pp. 287–288 (1996)

    Google Scholar 

  19. Nass, C., Moon, Y., Fogg, B.J., Reeves, B., Dryer, C.: Can computer personalities be human personalities? In: Conference Companion on Human Factors in Computing Systems, pp. 228–229. ACM (1995)

    Google Scholar 

  20. Neff, M., Wang, Y., Abbott, R., Walker, M.: Evaluating the effect of gesture and language on personality perception in conversational agents. In: Allbeck, J., Badler, N., Bickmore, T., Pelachaud, C., Safonova, A. (eds.) IVA 2010. LNCS (LNAI), vol. 6356, pp. 222–235. Springer, Heidelberg (2010).

    CrossRef  Google Scholar 

  21. Pennebaker, J.W., King, L.A.: Linguistic styles: language use as an individual difference. J. Pers. Soc. Psychol. 77(6), 1296 (1999)

    CrossRef  Google Scholar 

  22. von der Pütten, A.M., Krämer, N.C., Gratch, J.: How our personality shapes our interactions with virtual characters - implications for research and development. In: Allbeck, J., Badler, N., Bickmore, T., Pelachaud, C., Safonova, A. (eds.) IVA 2010. LNCS (LNAI), vol. 6356, pp. 208–221. Springer, Heidelberg (2010).

    CrossRef  Google Scholar 

  23. Roffo, G., Giorgetta, C., Ferrario, R., Cristani, M.: Just the way you chat: linking personality, style and recognizability in chats. In: Park, H.S., Salah, A.A., Lee, Y.J., Morency, L.-P., Sheikh, Y., Cucchiara, R. (eds.) HBU 2014. LNCS, vol. 8749, pp. 30–41. Springer, Cham (2014).

    CrossRef  Google Scholar 

  24. Silvervarg, A., Haake, M., Gulz, A.: Educational potentials in visually androgynous pedagogical agents. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS (LNAI), vol. 7926, pp. 599–602. Springer, Heidelberg (2013).

    CrossRef  Google Scholar 

  25. Silvervarg, A., Raukola, K., Haake, M., Gulz, A.: The effect of visual gender on abuse in conversation with ECAs. In: Nakano, Y., Neff, M., Paiva, A., Walker, M. (eds.) IVA 2012. LNCS (LNAI), vol. 7502, pp. 153–160. Springer, Heidelberg (2012).

    CrossRef  Google Scholar 

  26. Smestad, T.L.: Personality Matters! Improving The User Experience of Chatbot Interfaces-Personality provides a stable pattern to guide the design and behaviour of conversational agents. Master’s thesis, NTNU (2018)

    Google Scholar 

  27. Verhagen, T., Van Nes, J., Feldberg, F., Van Dolen, W.: Virtual customer service agents: using social presence and personalization to shape online service encounters. J. Comput. Med. Commun. 19(3), 529–545 (2014)

    CrossRef  Google Scholar 

Download references


This work was supported, in part, by Science Foundation Ireland grant 13/RC/2094. Thank you to Dr. Brendan Rooney and Dr. Nicola Fox Hamilton for their very helpful advice. Thank you to Thomas Laurent and Glynda Ruane for their useful feedback on an earlier version of this manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Elayne Ruane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruane, E., Farrell, S., Ventresque, A. (2021). User Perception of Text-Based Chatbot Personality. In: Følstad, A., et al. Chatbot Research and Design. CONVERSATIONS 2020. Lecture Notes in Computer Science(), vol 12604. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68287-3

  • Online ISBN: 978-3-030-68288-0

  • eBook Packages: Computer ScienceComputer Science (R0)