Skip to main content

Combining Structural Optimization Solutions Using FFF Manufacturing

  • Chapter
  • First Online:
Materials Design and Applications III

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 149))

  • 412 Accesses

Abstract

In the industry, the need to reduce the manufacturing cost and CO2 emissions makes structural optimization an important computational tool to develop and design products with the required and necessary mechanical properties and as light as possible. Additive manufacturing is nowadays used to produce structural optimized products due to the possibility of producing complex shapes with high accuracy. In this work, a topology software developed by the research team and an already validated commercial software capable to structurally optimize a structural component and deliver its prototype are used. A cross-analysis was performed to validate and compare the results. Advanced numerical discretization techniques combined with algorithms of evolutionary structural optimization were applied in the process. Several optimized structures were produced using FFF technology and experimentally tested. The chosen material was PLA with a Young’s modulus of 3145 MPa. It was verified that the optimization tools are suitable to reduce the parts weight and, at the same time, maintain the structural performance. Thus, it is expected to reduce the part costs and the CO2 emissions resulting from their production with this approach, without risking the required mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allaire, G., Jouve, F.: Optimal design of micro-mechanisms by the homogenization method. Rev. Eur. des Eléments. 11, 405–416 (2002)

    Google Scholar 

  • Atluri, S.N., Zhu, T.: A new meshless local petrov-galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22, 117–127 (1998). https://doi.org/10.1007/s004660050346

    Article  Google Scholar 

  • Azamirad, G., Arezoo, B.: Structural design of stamping die components using bi-directional evolutionary structural optimization method. Int. J. Adv. Manuf. Technol. 87, 969–979 (2016). https://doi.org/10.1007/s00170-016-8344-7

    Article  Google Scholar 

  • Belinha, J.: Meshless Methods in Biomechanics: Bone Tissue Remodelling Analysis. Springer International Publishing (2014)

    Google Scholar 

  • Belinha, J., Dinis, L.M.J.S., Natal Jorge, R.M.: The natural radial element method. Int. J. Numer. Methods Eng. 93, 1286–1313 (2013a). https://doi.org/10.1002/nme

    Google Scholar 

  • Belinha, J., Dinis, L., Jorge, R.M.N.: Composite laminated plate analysis using the natural radial element method. Compos. Struct. 103, 50–67 (2013b)

    Google Scholar 

  • Belinha, J., Dinis, L.M.J.S., Natal Jorge, R.M.: Analysis of thick plates by the natural radial element method. Int. J. Mech. Sci. 76, 33–48 (2013c). https://doi.org/10.1016/j.ijmecsci.2013.08.011

  • Belytschko, T., Lu, Y.Y., Gu, L.: Element-Free Galerkin Methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)

    Article  Google Scholar 

  • Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)

    Article  Google Scholar 

  • Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods, and Applications. Springer, Berlin Heidelberg (2003)

    Google Scholar 

  • Chacón, J.M., Caminero, M.A., Garc$\$’$\$ia-Plaza, E., Núnez, P.J.: Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 124, 143–157 (2017)

    Google Scholar 

  • Christensen, P.W., Klarbring, A.: An Introduction to Structural Optimization. Springer, Netherlands (2008)

    Google Scholar 

  • Colin Donald Chapman: Structural Topology Optimization Via The Genetic Algorithm (1994)

    Google Scholar 

  • Dini Argeo: HLD300, http://www.diniargeo.com/prd/scales/laboratory-scales/hld-150g-600g-en.aspx (2020)

  • Dinis, L.M.J.S., Jorge, R.M. Natal, Belinha, J.: Analysis of 3D solids using the natural neighbour radial point interpolation method. Comput. Methods Appl. Mech. Eng. 196, 2009–2028 (2007). https://doi.org/10.1016/j.cma.2006.11.002

  • Dinis, L.M.J.S., Natal Jorge, R.M., Belinha, J.: Analysis of 3D solids using the natural neighbour radial point interpolation method. Comput. Methods Appl. Mech. Eng. 196, 2009–2028 (2007). https://doi.org/10.1016/j.cma.2006.11.002

  • Dinis, L.M.J.S., Natal Jorge, R.M., Belinha, J.: Analysis of plates and laminates using the natural neighbour radial point interpolation method. Eng. Anal. Bound. Elem. 32, 267–279 (2008). https://doi.org/10.1016/j.enganabound.2007.08.006

  • Duan, Y.: A note on the meshless method using radial basis functions. Comput. Math. with Appl. 55, 66–75 (2008)

    Article  Google Scholar 

  • Ebel, E., Sinnemann, T.: Fabrication of FDM 3D objects with ABS and PLA and determination of their mechanical properties. RTe j. 2014, (2014)

    Google Scholar 

  • Futura, F.: Technical data sheet—Premium PLA. (2015)

    Google Scholar 

  • Gu, Y.: Meshfree methods and their comparisons. Int. J. Comput. Methods 2, 477–515 (2005)

    Article  Google Scholar 

  • Liu, G.-R., Gu, Y.-T.: An introduction to meshfree methods and their programming. Springer Science & Business Media (2005)

    Google Scholar 

  • Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. methods fluids. 20, 1081–1106 (1995)

    Article  Google Scholar 

  • Luo, Z., Zhang, N., Wang, Y., Gao, W.: Topology optimization of structures using meshless density variable approximants. Int. J. Numer. Methods Eng. 93, 443–464 (2013). https://doi.org/10.1002/nme.4394

    Article  Google Scholar 

  • Martin Philip Bendsoe: Noboru Kikuchi: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  Google Scholar 

  • Moreira, S., Belinha, J., Dinis, L., Jorge, R.M.N.: Análise de vigas laminadas utilizando o natural neighbour radial point interpolation method. Rev. Int. Métodos Numéricos para Cálculo y Diseño en Ing. 30, 108–120 (2014)

    Google Scholar 

  • Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M.: Meshless methods: a review and computer implementation aspects. Math. Comput. Simul. 79, 763–813 (2008). https://doi.org/10.1016/j.matcom.2008.01.003

    Article  Google Scholar 

  • Ovako: Steel Navigator, https://steelnavigator.ovako.com/steel-grades/s235/ (2020)

  • Pei, E., Lanzotti, A., Grasso, M., Staiano, G., Martorelli, M.: The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyp. J. (2015)

    Google Scholar 

  • Redwood, B., Schöffer, F., Garret, B.: The 3D Printing Handbook: Technologies, Design and Applications. 3D Hubs B.V. (2017)

    Google Scholar 

  • Rozvany, G.I.N.: A critical review of established methods of structural topology optimization. Struct. Multidiscip. Optim. 37, 217–237 (2009)

    Article  Google Scholar 

  • Santana, L., Alves, J.L., Netto, A. da C.S.: A study of parametric calibration for low cost 3D printing: Seeking improvement in dimensional quality. Mater. Des. 135, 159–172 (2017)

    Google Scholar 

  • Sigmund, O.: On the usefulness of non-gradient approaches in topology optimization. Struct. Multidiscip. Optim. 43, 589–596 (2011)

    Article  Google Scholar 

  • Sigmund, O., Maute, K.: Topology optimization approaches. Struct. Multidiscip. Optim. 48, 1031–1055 (2013). https://doi.org/10.1007/s00158-013-0978-6

    Article  Google Scholar 

  • Silva, C.M.M. da: 3D printing of gyroid structures for superior structural behaviour (2019)

    Google Scholar 

  • Swedish Research Council (VR): Structural Optimization, (2013) https://www.math.kth.se/optsyst/Struc.html

  • Tanskanen, P.: The evolutionary structural optimization method: theoretical aspects. Comput. Methods Appl. Mech. Eng. 191, 5485–5498 (2002). https://doi.org/10.1016/S0045-7825(02)00464-4

    Article  Google Scholar 

  • Tymrak, B.M., Kreiger, M., Pearce, J.M.: Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater. Des. 58, 242–246 (2014). https://doi.org/10.1016/j.matdes.2014.02.038

    Article  CAS  Google Scholar 

  • Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. J. für die reine und Angew. Math. 134, 198–287 (1908)

    Google Scholar 

  • Wang, J.G., Liu, G.R.: A point interpolation meshless method based on radial basis functions. Int. J. Numer. Methods Eng. 54, 1623–1648 (2002). https://doi.org/10.1002/nme.489

    Article  Google Scholar 

  • Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003). https://doi.org/10.1016/S0045-7825(02)00559-5

    Article  Google Scholar 

  • Xia, L., Xia, Q., Huang, X., Xie, Y.M.: Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review. Arch. Comput. Methods Eng. 25, 437–478 (2018)

    Article  Google Scholar 

  • Zhang, X., Zhu, B.: Topology Optimization of Compliant Mechanisms. Springer Singapore (2018)

    Google Scholar 

Download references

Acknowledgements

The authors truly acknowledge the funding provided by Ministério da Ciência, Tecnologia e Ensino Superior - Fundação para a Ciência e a Tecnologia (Portugal), and LAETA, under project UIDB/50022/2020. Finally, the authors acknowledge the synergetic collaboration with the collaborators of “Computational Mechanics Research Laboratory CMech-Lab” (ISEP, FEUP and INEGI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. L. Pais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bastos, E.F.C., Athayde Malafaya, B., Pais, A.I.L., Marques, M.C., Alves, J.L., Belinha, J. (2021). Combining Structural Optimization Solutions Using FFF Manufacturing. In: da Silva, L.F.M. (eds) Materials Design and Applications III. Advanced Structured Materials, vol 149. Springer, Cham. https://doi.org/10.1007/978-3-030-68277-4_9

Download citation

Publish with us

Policies and ethics