Skip to main content

Industrially Important Fungal Enzymes: Productions and Applications

  • Chapter
  • First Online:
Recent Trends in Mycological Research

Abstract

Fungi, obligate heterotrophs are known as the most dominant sources of enzymes over other sources. At present, search of novel fungal enzymes has emerged due to expeditious industrial growth and environmental problems. Common industrially important fungal enzymes are amylase, glucosidase, glucose oxidase, protease, pectinase, cellulose, invertase, laccase, ligninase, lipase, chitinase, and xylanase. In the commercial production of these fungal enzymes, fermentation is the prime process which can be either submerged fermentation or solid-state fermentation. Efficacy of these fungal enzymes has been proven in various cultivational advantages, optimum production, short time, and biocatalyzing capability. With the base of hydrolytic properties of these enzymes, it can be used in unique functions of several industrial products. Fungal enzyme application in various industrial processes, i.e., juice clarification, single-cell proteins production, lignocellulose saccharification, bioethanol production, depolymerization, stain removal, dehairing, biopulping, biobleaching, biopolishing, decolorization, biocontrol, organic pollutant remediation, lignin degradation, biosensors manufacturing, and cancer treatment possess several benefits over other technologies. Industrial application of fungal enzymes acts as eco-friendly alternative and cost-effective practices by avoiding chemical reagents. Due to these advantages, more than half of the industrial enzymes occupied by fungal origin. In this chapter, authors highlighted the ability of fungi in the production of various enzymes and its application in diverse industrial processes in food industries, beverage and wine production, animal feed manufacturing, paper and pulp industries, textiles and laundry sectors, biofuel production, pharmaceutical industries, agriculture, and environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah J, Greetham D, Pensupa N, Tucker G, Du C (2016) Optimizing cellulase production from municipal solid waste (MSW) using solid state fermentation (SSF). J Fundam Renew Energy Appl 6(3):1–10

    Article  CAS  Google Scholar 

  • Abdullah R, Jafer A, Nisar K, Kaleem A (2018) Process optimization for pectinase production by locally isolated fungal strain using submerged fermentation. Biosci J 34(4):1025–1032

    Article  Google Scholar 

  • Abu-Tahon MA, Isaac GS (2020) Anticancer and antifungal efficiencies of purified chitinase produced from Trichoderma viride under submerged fermentation. J Gen Appl Microbiol 66(1):32–40

    Article  CAS  PubMed  Google Scholar 

  • Achten C, Cheng S, Straub KL, Hofmann T (2011) The lack of microbial degradation of polycyclic aromatic hydrocarbons from coal-rich soils. Environ Pollut 159:623–629

    Article  CAS  PubMed  Google Scholar 

  • Adekunle AE, Zhang C, Guo C, Liu CZ (2017) Laccase production from Trametes versicolor in solid-state fermentation of steam-exploded pretreated cornstalk. Waste Biomass Valori 8(1):153–159

    Article  CAS  Google Scholar 

  • Ahmed I, Zia MA, Hussain MA, Akram Z, Naveed MT, Nowrouzi A (2016) Bioprocessing of citrus waste peel for induced pectinase production by Aspergillus niger; its purification and characterization. J Radiat Res Appl Sci 9:148–154

    Article  CAS  Google Scholar 

  • Aita BC, Spannemberg SS, Schmaltz S, Zabot GL, Tres MV, Kuhn RC et al (2019) Production of cell-wall degrading enzymes by solid-state fermentation using agroindustrial residues as substrates. J Environ Chem Eng 7:103193

    Article  CAS  Google Scholar 

  • Ajijolakewu AK, Leh CP, Abdullah WNW, Keong Lee C (2017) Optimization of production conditions for xylanase production by newly isolated strain Aspergillus niger through solid state fermentation of oil palm empty fruit bunches. Biocatal Agric Biotechnol 11:239–247

    Article  Google Scholar 

  • Akpinar M, Ozturk Urek R (2017) Induction of fungal laccase production under solid state bioprocessing of new agroindustrial waste and its application on dye decolorization. 3 Biotech 7:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Alabdalall AH, ALanazi NA, Aldakeel SA, Abdul Azeez S, Borgio JF (2020) Molecular, physiological, and biochemical characterization of extracellular lipase production by Aspergillus niger using submerged fermentation. Peer J 8:9425

    Article  Google Scholar 

  • Alarid-Garcia C, Escamilla-Silva EM (2017) Comparative study of the production of extracellular β-glucosidase by four different strains of Aspergillususing submerged fermentation. Prep Biochem Biotech 47:1

    Article  CAS  Google Scholar 

  • Alegre ACP, Polizeli MDLTDM, Terenzi HF, Jorge JA, Guimarães LHS (2009) Production of thermostable invertases by Aspergillus caespitosus under submerged or solid state fermentation using agroindustrial residues as carbon source. Braz J Microbiol 40:612–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali EH, El-Nagdy MA, Al-Garni SM, Ahmed MS, Rawaa AM (2017) Enhancement of alpha amylase production by Aspergillus flavus AUMC 11685 on mandarin (Citrus reticulata) peel using submerged fermentation. Eur J Biol Res 7:154–164

    CAS  Google Scholar 

  • Almeida MN, Guimarães VM, Falkoski DL, de Camargo BR, Fontes-Sant'ana GC, Maitan-Alfenas GP et al (2018) Purification and characterization of an invertase and a transfructosylase from Aspergillus terreus. J Food Biochem 42:12551

    Article  CAS  Google Scholar 

  • Andjelković U, Milutinović-Nikolić A, Jović-Jovičić N, Banković P, Bajt T, Mojović Z et al (2015) Efficient stabilization of Saccharomyces cerevisiae external invertase by immobilisation on modified beidellite nanoclays. Food Chem 168:262–269

    Article  PubMed  CAS  Google Scholar 

  • Anisa SK, Girish K (2014) Pectinolytic activity of Rhizopus sp. and Trichoderma viride. Int J Res Pure App Microbiol 4(2):28–31

    Google Scholar 

  • Apostolidi ME, Kalantzi S, Hatzinikolaou DG, Kekos D, Mamma D (2020) Catalytic and thermodynamic properties of an acidic α-amylase produced by the fungus Paecilomyces variotii ATHUM 8891. 3. Biotech 10(7):1–12

    Google Scholar 

  • Atalla SM, Gamal NGE, Awad HM (2020) Chitinase of marine Penicillium chrysogenum MH745129: isolation, identification, production and characterization as controller for citrus fruits postharvest pathogens. Jordan J Biol Sci 13(1):19–28

    CAS  Google Scholar 

  • Bakri Y, Jahwar M, Arabi MIE (2008) Improvement of xylanase production by Cochliobolus sativus in submerged culture. Food Technol Biotechnol 46:116–118

    CAS  Google Scholar 

  • Bala A, Singh B (2017) Concomitant production of cellulase and xylanase by thermophilic mould Sporotrichum thermophile in solid state fermentation and their applicability in bread making. World J Micro Biot 33(6):109

    Article  CAS  Google Scholar 

  • Bala A, Singh B (2019) Development of an environmental-benign process for efficient pretreatment and saccharification of Saccharum biomasses for bioethanol production. Renew Energy 130:12–24

    Article  CAS  Google Scholar 

  • Balaraju K, Park K, Jahagirdar S, Kaviyarasan V (2010) Production of cellulase and laccase enzymes by Oudemansiella radicata using agro wastes under solid-state and submerged conditions. Res Biotechnol 1(1):21–28

    Google Scholar 

  • Baldoni DB, Antoniolli ZI, Mazutti MA, Jacques RJS, Dotto AC, de Oliveira Silveira A et al (2020) Chitinase production by Trichoderma koningiopsis UFSMQ40 using solid state fermentation. Braz J Microbiol 4:1–12

    Google Scholar 

  • Bayless TM, Brown E, Paige DM (2017) Lactase non-persistence and lactose intolerance. Curr Gastroenterol Rep 19:23

    Article  PubMed  Google Scholar 

  • Benabda O, M’hir S, Kasmi M, Mnif W, Hamdi M (2019) Optimization of protease and amylase production by Rhizopus oryzae cultivated on bread waste using solid-state fermentation. J Chem:1–9, Article ID 3738181. https://doi.org/10.1155/2019/3738181

  • Bhalla TC, Thakur N, Thakur N (2017) Invertase of Saccharomyces cerevisiae SAA-612: production, characterization and application in synthesis of fructo-oligosaccharides. LWT 77:178–185

    Article  CAS  Google Scholar 

  • Bhardwaj N, Kumar B, Verma P (2019) A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresour Bioprocess 6(1):40

    Article  Google Scholar 

  • Bilal M, Jing Z, Zhao Y, Iqbal HM (2019) Immobilization of fungal laccase on glutaraldehyde cross linked chitosan beads and its biocatalytic potential to degrade bisphenol a. Biocatal Agric Biotechnol 19:101174

    Article  Google Scholar 

  • Binod P, Pusztahelyi T, Nagy V, Sandhya C, Szakács G, Pócsi I et al (2005) Production and purification of extracellular chitinases from Penicillium aculeatum NRRL 2129 under solid-state fermentation. Enzym Microb Technol 36:880–887

    Article  CAS  Google Scholar 

  • Boratyński F, Szczepańska E, Grudniewska A, Gniłka R, Olejniczak T (2018) Improving of hydrolases biosythesis by solid-state fermentation of Penicillium camemberti on rapeseed cake. Sci Rep 8:10157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borowiecki P, Justyniak I, Ochal Z (2017) Lipase-catalyzed kinetic resolution approach toward enantiomerically enriched 1-(β-hydroxypropyl)indoles. Tetrahedron Asymmetry 28:1717–1732

    Article  CAS  Google Scholar 

  • Botella C, Id O, Webb C, Cantero D, Blandino A (2005) Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochem Eng J 26:100–106

    Article  CAS  Google Scholar 

  • Brijwani K, Rigdon A, Vadlani PV (2010) Fungal laccases: production, function, and applications in food processing. Enzyme Res 149748:14974

    Google Scholar 

  • Campioni TS, de Jesus Moreira L, Moretto E, Nunes NSS, de Oliva Neto P (2019) Biobleaching of Kraft pulp using fungal xylanases produced from sugarcane straw and the subsequent decrease of chlorine consumption. Biomass Bioenergy 121:22–27

    Article  CAS  Google Scholar 

  • Carvalho LMJ, De Castro IM, Da Silva CAB (2008) A study of retention of sugars in the process of clarification of pineapple juice (Ananas comosus, L. Merril) by micro-and ultra-filtration. J Food Eng 87(4):447–454

    Article  CAS  Google Scholar 

  • Chao YP, Xie FH, Yang J, Lu JH, Qian SJ (2007) Screening for a new treptomyces strain capable of efficient keratin degradation. J Environ Sci (China) 19:1125–1128

    Article  CAS  Google Scholar 

  • Chelliappan B, Madhanasundareswari K (2013) Production and optimization of growth conditions for invertase enzyme by Aspergillus sp., in solid state fermentation (SSF) using papaya peel as substrate. J Microbiol Biotechnol Food Sci 3(3):266–269

    CAS  Google Scholar 

  • Chen Z, Liu Y, Liu L, Chen Y, Li S, Jia Y (2019) Purification and characterization of a novel β-glucosidase from Aspergillus flavus and its application in saccharification of soybean meal. Prep Biochem Biotech 49(7):671–678

    Article  CAS  Google Scholar 

  • Chimbekujwo KI, Ja'afaru MI, Adeyemo OM (2020) Purification, characterization and optimization conditions of protease produced by Aspergillus brasiliensis strain BCW2. Scientific African 8:00398

    Article  Google Scholar 

  • Chutani P, Sharma KK (2016) Concomitant production of xylanases and cellulases from Trichoderma longibrachiatum MDU-6 selected for the deinking of paper waste. Bioprocess Biosyst Eng 39(5):747–758

    Article  CAS  PubMed  Google Scholar 

  • Colonia BSO, Woiciechowski AL, Malanski R, Letti LAJ, Soccol CR (2019) Pulp improvement of oil palm empty fruit bunches associated to solid-state biopulping and biobleaching with xylanase and lignin peroxidase cocktail produced by Aspergillus sp. LPB-5. Bioresour Technol 285:121361

    Google Scholar 

  • Cunha L, Martarello R, Souza PMD, Freitas MMD, Barros KVG, Ferreira Filho EX et al (2018) Optimization of xylanase production from Aspergillus foetidus in soybean residue. Enzyme Res:1–7. Article ID 6597017. https://doi.org/10.1155/2018/6597017

  • da Silva LCA, Honorato TL, Franco TT, Rodrigues S (2012) Optimization of Chitosanase production by Trichoderma koningii sp. under solid-state fermentation. Food Bioprocess Technol 5:1564–1572

    Article  CAS  Google Scholar 

  • da Silva OS, Oliveira RLD, Souza-Motta CM, Porto ALF, Porto TS (2016) Novel protease from Aspergillus tamarii URM 4634: production and characterization using inexpensive agroindustrial substrates by solid-state fermentation. Adv Enzyme Res 4(4):19

    Article  CAS  Google Scholar 

  • da Silva RR, da Conceição PJP, de Menezes CLA, de Oliveira Nascimento CE, Bertelli MM, Júnior AP et al (2019) Biochemical characteristics and potential application of a novel ethanol and glucose-tolerant β-glucosidase secreted by Pichia guilliermondii G1. 2. J Biotechnol 294:73–80

    Article  PubMed  CAS  Google Scholar 

  • Dar GH, Kamili AN, Nazir R, Bandh SA, Jan TR, Chishti MZ (2015) Enhanced production of α-amylase by Penicillium chrysogenum in liquid culture by modifying the process parameters. Microb Pathog 88:10–15

    Article  CAS  PubMed  Google Scholar 

  • Darwesh OM, El-Maraghy SH, Abdel-Rahman HM, Zaghloul RA (2020) Improvement of paper wastes conversion to bioethanol using novel cellulose degrading fungal isolate. Fuel 262:116518

    Article  CAS  Google Scholar 

  • Das A, Shivakumar S, Bhattacharya S, Shakya S, Swathi SS (2016) Purification and characterization of a surfactant-compatible lipase from Aspergillus tamarii JGIF06 exhibiting energy-efficient removal of oil stains from polycotton fabric. 3 Biotech 6:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Das A, Bhattacharya S, Shivakumar S, Shakya S, Sogane SS (2017) Coconut oil induced production of a surfactant-compatible lipase from Aspergillus tamarii under submerged fermentation. J Basic Microbiol 57:114–120

    Article  CAS  PubMed  Google Scholar 

  • de Castro RJS, Ohara A, Nishide TG, Bagagli MP, Dias FFG, Sato HH (2015) A versatile system based on substrate formulation using agroindustrial wastes for protease production by Aspergillus niger under solid state fermentation. Biocataly Agric Biotechnol 4(4):678–684

    Article  Google Scholar 

  • de Oliveira APA, Silvestre MA, Garcia NFL, Alves-Prado HF, Rodrigues A, Paz MFD et al (2016) Production and catalytic properties of amylases from Lichtheimia ramosa and Thermoascus aurantiacus by solid-state fermentation. Sci World J:1–10. Article ID 7323875. https://doi.org/10.1155/2016/7323875

  • de Souza PM (2010) Application of microbial α-amylase in industry-a review. Braz J Microbiol 41:850–861

    Article  PubMed  PubMed Central  Google Scholar 

  • de Souza PM, Bittencourt ML, Caprara CC, de Freitas M, de Almeida RP, Silveira D et al (2015) A biotechnology perspective of fungal proteases. Braz J Microbiol 46(2):337–346

    Article  PubMed  PubMed Central  Google Scholar 

  • de Souza JB, Michelin M, Amâncio FL, Brazil OAV, Maria de Lourdes TM, Ruzene DS et al (2020) Sunflower stalk as a carbon source inductive for fungal xylanase production. Ind Crop Prod 153:112368

    Article  CAS  Google Scholar 

  • Dekker RHF, Richards GN (1976) Hemicellulases: their occurrence, purification, properties, and mode of action. Adv Carbohyd Chem Bi 32:277–352

    Article  CAS  Google Scholar 

  • Deng JJ, Shi D, Mao HH, Li ZW, Liang S, Ke Y et al (2019) Heterologous expression and characterization of an antifungal chitinase (Chit46) from Trichoderma harzianum GIM 3.442 and its application in colloidal chitin conversion. Int J Biol Macromol 134:113–121

    Article  CAS  PubMed  Google Scholar 

  • Devi SK, Prabhu N, Monika S, Swapna NM, Vaishali S, Gajendran T (2020) Sequestration and purification of essential enzyme from Pleurotus florida compost waste and its application studies. J Appl Biol Biotechnol 8(1):64–68

    Article  CAS  Google Scholar 

  • Devi R, Kaur T, Guleria G, Rana K, Kour D, Yadav N et al (2020a) Fungal secondary metabolites and their biotechnological application for human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 147–161. https://doi.org/10.1016/B978-0-12-820528-0.00010-7

    Chapter  Google Scholar 

  • Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020b) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microb Biosyst 5:21–47

    Article  Google Scholar 

  • Dhake KP, Thakare DD, Bhanage BM (2013) Lipase: a potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds. Flavour Frag J 28(2):71–83

    Article  CAS  Google Scholar 

  • Dhillon GS, Kaur S, Brar SK, Verma M (2012) Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation. Ind Crop Prod 38:6–13

    Article  CAS  Google Scholar 

  • Dias LM, Dos Santos BV, Albuquerque CJB, Baeta BEL, Pasquini D, Baffi MA (2018) Biomass sorghum as a novel substrate in solid state fermentation for the production of hemicellulases and cellulases by Aspergillus niger and A. fumigatus. J Appl Microbiol 124(3):708–718

    Article  CAS  PubMed  Google Scholar 

  • Ding Z, Peng L, Chen Y, Zhang L, Shi G, Zhang K (2012) Production and characterization of thermostable laccase from the mushroom, Ganoderma lucidum, using submerged fermentation. Afr J Microbiol Res 6:1147–1157

    Article  CAS  Google Scholar 

  • Draelos ZD (2015) A split-face evaluation of a novel pigment-lightening agent compared withno treatment and hydroquinone. J Am Acad Dermatol 72:105–107

    Article  CAS  PubMed  Google Scholar 

  • Dubey MK, Zehra A, Aamir M, Meena M, Ahirwal L, Singh S et al (2017) Improvement strategies, cost effective production, and potential applications of fungal glucose oxidase (GOD): current updates. Front Microbiol 8:1032–1054

    Article  PubMed  PubMed Central  Google Scholar 

  • El Enshasy HA, Elsayed EA, Suhaimi N, Abd Malek R, Esawy M (2018) Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system. BMC Biotechnol 18(1):71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Hariri M, Al-Yazeed HA, Samir A, Elhelw R, Soliman R (2015) Genetic and phenotypic diversity of naturally isolated wild strains of Aspergillus niger with hyper glucose oxidase production. J Biosci Biotechnol 4:245–253

    Google Scholar 

  • El-Rahim WMA, Moawad H, Hashem MM, Gebreil GM, Zakaria M (2020) Highly efficient fungal pectinase and laccase producers among isolates from flax retting liquor. Biocatal Agric Biotechnol 25:101570

    Article  Google Scholar 

  • Ergun SO, Urek RO (2017) Production of ligninolytic enzymes by solid state fermentation using Pleurotus ostreatus. Ann Agrar Sci 15(2):273–277

    Article  Google Scholar 

  • Ezeilo UR, Wahab RA, Mahat NA (2020) Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation. Renew Energy 156:1301–1312

    Article  CAS  Google Scholar 

  • Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI (2017) Lignin peroxidase functionalities and prospective applications. Microbiology 6:1–14

    Google Scholar 

  • Fazouane-Naimi F, Mechakra A, Abdellaoui R, Nouani A, Daga SM, Alzouma AM et al (2010) Characterization and cheese-making properties of rennet-like enzyme produced by a local Algerian isolate of Aspergillus niger. Food Biotechnol 24(3):258–269

    Article  CAS  Google Scholar 

  • Florencio C, Badino AC, Farinas CS (2017) Desafios relacionados à produção e aplicação das enzimas celulolíticas na hidrólise da biomassa lignocelulósica. Quim Nova 40:1082–1093

    CAS  Google Scholar 

  • Fonseca TC, Luna DC, Oliveira JF, Banhara VF, Paiva JB, Souza LM et al (2018) Amylase production by Aspergillus tamarii (UCP 1261) through submerged fermentation using alternative media containing agro-industrial residues exploring microorganisms. In: Mendez-Vilas A (ed) Recent advances in applied microbiology. Brown Walker Press, pp 120–124

    Google Scholar 

  • Franco DG, Spalanzani RN, Lima EE, Marchetti CR, Silva PO, Masui DC et al (2017) Biochemical properties of a serine protease from Aspergillus flavus and application in dehairing. Biocatal Biotransformation 35(4):249–259

    Article  CAS  Google Scholar 

  • Frassatto PAC, Casciatori FP, Thoméo JC, Gomes E, Boscolo M, da Silva R (2020) β-Glucosidase production by Trichoderma reesei and Thermoascus aurantiacus by solid state cultivation and application of enzymatic cocktail for saccharification of sugarcane bagasse. Biomass Convers Biorefin:1–11. https://doi.org/10.1007/s13399-020-00608-1

  • Fukaya K, Yamaguchi Y, Watanabe A, Yamamoto H, Sugai T, Sugai T (2016) Practical synthesis of the C-ring precursor of paclitaxel from 3-methoxytoluene. J Antibiot (Tokyo) 69:273–279

    Article  CAS  Google Scholar 

  • Giraldo MA, da Silva TM, Salvato F, Terenzi HF, Jorge JA, Guimarães LHS (2012) Thermostable invertases from Paecylomyces variotii produced under submerged and solid-state fermentation using agroindustrial residues. World J Microb Biot 28:463–472

    Article  CAS  Google Scholar 

  • Gnanadoss JJ, Devi SK (2019) Optimization of nutritional and culture conditions for improved protease production by Aspergillus nidulans and Aspergillus flavus. J Microbiol Biotechnol Food Sci 4(6):518–523

    Article  Google Scholar 

  • Gomathi D, Muthulakshmi C, Kumar DG, Ravikumar G, Kalaiselvi M, Uma C (2012) Submerged fermentation of wheat bran by Aspergillus flavus for production and characterization of carboxy methyl cellulase. Asian Pac J Trop Biomed 2:S67–S73

    Article  Google Scholar 

  • Gopinath SC, Anbu P, Arshad MM, Lakshmipriya T, Voon CH, Hashim U et al (2017) Biotechnological processes in microbial amylase production. Biomed Res Int:1–9. Article ID 1272193. http://dx.doi.org/10.1155/2017/1272193

  • Gortari MC, Hours RA (2008) Fungal chitinases and their biological role in the antagonism onto nematode eggs. Mycol Prog 7:221–238

    Article  Google Scholar 

  • Green BJ, Beezhold DH (2011) Industrial fungal enzymes: an occupational allergen perspective. J Allergy 682574:1–11

    Article  CAS  Google Scholar 

  • Guan GQ, Zhao PX, Zhao J, Wang MJ, Huo SH, Cui FJ et al (2016) Production and partial characterization of an alkaline xylanase from a novel fungus Cladosporium oxysporum. Biomed Res Int:1–7. Article ID 4575024. https://doi.org/10.1155/2016/4575024

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int:1–18. Article ID 329121. https://doi.org/10.1155/2013/329121

  • Gutiérrez-Román MI, Holguín-Meléndez F, Dunn MF, Guillén-Navarro K, Huerta-Palacios G (2015) Antifungal activity of Serratia marcescens CFFSUR-B2 purified chitinolytic enzymes and prodigiosin against Mycosphaerella fijiensis, causal agent of black Sigatoka in banana (Musa spp.). BioControl 60:565–572

    Article  CAS  Google Scholar 

  • Han W, He M (2010) The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition. Bioresour Technol 101(10):3724–3731

    Article  CAS  PubMed  Google Scholar 

  • Haq IU, Nawaz A, Mukhtar H, Ahmed W (2014) Isolation and identification of glucose oxidase hyper producing strain of Aspergillus niger. Br Microbiol Res J 4:195–205

    Article  Google Scholar 

  • Hartl L, Zach S, Seidl-Seiboth V (2012) Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Appl Microbiol Biot 93(2):533–543

    Article  CAS  Google Scholar 

  • Hati S, Vij S, Singh BP, Mandal S (2015) B-glucosidase activity and bioconversion of isoflavones during fermentation of soymilk. J Sci Food Agric 95:216–220

    Article  CAS  PubMed  Google Scholar 

  • He L, Mao Y, Zhang L, Wang H, Alias SA, Gao B et al (2017) Functional expression of a novel α-amylase from Antarctic psychrotolerant fungus for baking industry and its magnetic immobilization. BMC Biotechnol 17(1):22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heidarizadeh M, Rezaei PF, Shahabivand S (2018) Novel pectinase from Piriformospora indica, optimization of growth parameters and enzyme production in submerged culture condition. Turk J Biochem 43:289–295

    Article  CAS  Google Scholar 

  • Herrera-López EJ (2012) Lipase and phospholipase biosensors: a review. In: Sandoval G (ed) Lipases and phospholipases. Methods in molecular biology (methods and protocols). Humana Press, pp 525–543. https://doi.org/10.1007/978-1-61779-600-5_30

  • Hoondal G, Tiwari R, Tewari R, Dahiya NBQK, Beg Q (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59(4–5):409–418

    CAS  PubMed  Google Scholar 

  • Hutsch BW, Saqib M, Osthushenrich T, Schubert S (2014) Invertase activity limits grain yield of maize under salt stress. J Plant Nutr Soil Sci 177:278–286

    Article  CAS  Google Scholar 

  • Imran M, Bano S, Nazir S, Javid A, Asad MJ, Yaseen A (2019) Cellulases production and application of cellulases and accessory enzymes in pulp and paper industry: a review. PSM Biol Res 4(1):29–39

    Google Scholar 

  • Javed S, Azeem F, Hussain S, Rasul I, Siddique MH, Riaz M et al (2018) Bacterial lipases: a review on purification and characterization. Prog Biophys Mol Biol 132:23–34

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Song J, Liu GQ (2020) Bioethanol production from rice straw through an enzymatic route mediated by enzymes developed in-house from Aspergillus fumigatus. Energy 190:116395

    Article  CAS  Google Scholar 

  • Kantharaj P, Boobalan B, Sooriamuthu S, Mani R (2017) Lignocellulose degrading enzymes from fungi and their industrial applications. Int J curr Res Rev 9(21):1–12

    CAS  Google Scholar 

  • Karami F, Ghorbani M, Mahoonak AS, Khodarahmi R (2020) Fast, inexpensive purification of β-glucosidase from Aspergillus niger and improved catalytic/physicochemical properties upon the enzyme immobilization: possible broad prospects for industrial applications. LWT 118:108770

    Article  CAS  Google Scholar 

  • Karmakar M, Ray RR (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6(1):41

    Article  CAS  Google Scholar 

  • Kaur T, Devi R, Kour D, Yadav N, Prasad S, Singh A et al (2020) Advances in microbial bioresources for sustainable biofuels production: current research and future challenges. In: Yadav AN, Rastegari AA, Yadav N, Gaur R (eds) Biofuels production – sustainability and advances in microbial bioresources. Springer International Publishing, Cham, pp 371–387. https://doi.org/10.1007/978-3-030-53933-7_17

  • Ketipally R, Kumar GK, Ram MR (2019) Polygalacturonase production by Aspergillus nomius MR103 in solid state fermentation using agro-industrial wastes. J Appl Nat Sci 11:305–310

    Article  CAS  Google Scholar 

  • Khurshid S, Kafiat T, Hanif U, Ulfat M, Qureshi MZ, Bashir T et al (2013) Application of glucose oxidase for the production of metal gluconates by fermentation. Afr J Biotechnol 12:6766–6775

    Article  CAS  Google Scholar 

  • Kouassi-Koffi JD, Muresan V, Gnangui SN, Mudura E, Kouamé LP (2014) Effects of wheat flour dough’s viscoelastic level by adding glucose oxidase on its dynamic shear properties whatever the strain modes. Bull UASVM Food Sci Technol 71:32–37

    CAS  Google Scholar 

  • Kour D, Rana KL, Kaur T, Singh B, Chauhan VS, Kumar A et al (2019a) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina G, Gupta VK, Singh B, Gathergood N (eds) Bioprocessing for biomolecules production, pp 321–372. https://doi.org/10.1002/9781119434436.ch16

    Chapter  Google Scholar 

  • Kour D, Rana KL, Kumar R, Yadav N, Rastegari AA, Yadav AN et al (2019b) Gene manipulation and regulation of catabolic genes for biodegradation of biphenyl compounds. In: Singh HB, Gupta VK, Jogaiah S (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 1–23. https://doi.org/10.1016/B978-0-444-63503700001-2

    Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019c) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for value-added products and environments, vol 2. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kour D, Kaur T, Yadav N, Rastegari AA, Singh B, Kumar V et al (2020) Phytases from microbes in phosphorus acquisition for plant growth promotion and soil health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 157–176. https://doi.org/10.1016/B978-0-12-820526-6.00011-7

    Chapter  Google Scholar 

  • Kriaa M, Kammoun R (2016) Producing Aspergillus tubingensis CTM507 glucose oxidase by solid state fermentation versus submerged fermentation: process optimization and enzyme stability by an intermediary metabolite in relation with diauxic growth. J Chem Technol Biot 91:1540–1550

    Article  CAS  Google Scholar 

  • Kriaa M, Hammami I, Sahnoun M, Azebou MC, Triki MA, Kammoun R (2015) Purification, biochemical characterization and antifungal activity of a novel Aspergillus tubingensis glucose oxidase steady on broad range of pH and temperatures. Bioprocess Biosyst Eng 38:2155–2166

    Article  CAS  PubMed  Google Scholar 

  • Kubra KT, Ali S, Walait M, Sundus H (2018) Potential applications of pectinases in food, agricultural and environmental sectors. J Pharm Chem Biol Sci 6:23–34

    CAS  Google Scholar 

  • Kuhad RC, Mehta G, Gupta R, Sharma KK (2010) Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 34(8):1189–1194

    Article  CAS  Google Scholar 

  • Kumar P, Pant DC, Kalia VC (2014) Ecobiotechnological strategy to enhance efficiency of bioconversion of wastes into hydrogen and methane. Indian J Microbiol 54:262–267

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Brar A, Vivekanand V, Pareek N (2017) Production of chitinase from thermophilic Humicola grisea and its application in production of bioactive chitooligosaccharides. Int J Biol Macromol 104:1641–1647

    Article  CAS  PubMed  Google Scholar 

  • Kumura H, Saito C, Taniguchi Y (2017) Adjunctive application of solid-state culture products from Aspergillus oryzae for semi-hard cheese. Adv Dairy Res 5(3):1–7

    Google Scholar 

  • Kunamneni A, Permaul K, Singh S (2005) Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. J Biosci Bioeng 100:168–171

    Article  CAS  PubMed  Google Scholar 

  • Kupski L, Pagnussatt FA, Buffon JG, Furlong EB (2014) Endoglucanase and total cellulase from newly isolated Rhizopus oryzae and Trichoderma reesei: production, characterization, and thermal stability. Appl Biochem Biotechnol 172:458–468

    Article  CAS  PubMed  Google Scholar 

  • Le B, Yang SH (2018) Characterization of a chitinase from Salinivibrio sp. BAO‐1801 as an antifungal activity and a biocatalyst for producing chitobiose. J Basic Microbiol 58:848–856

    Google Scholar 

  • Le B, Yang SH (2019) Microbial chitinases: properties, current state and biotechnological applications. World J Microbiol Biotechnol 35(9):144

    Article  PubMed  Google Scholar 

  • Li PJ, Xia JL, Shan Y, Nie ZY, Su DL, Gao QR et al (2015) Optimizing production of pectinase from orange peel by Penicillium oxalicum PJ02 using response surface methodology. Waste Biomass Valori 6(1):13–22

    Article  CAS  Google Scholar 

  • Li C, Kumar A, Luo X, Shi H, Liu Z, Wu G (2020) Highly alkali-stable and cellulase-free xylanases from Fusarium sp. 21 and their application in clarification of orange juice. Int J Biol Macromol 155:572–580

    Article  CAS  PubMed  Google Scholar 

  • Linde D, Rodríguez-Colinas B, Estévez M, Poveda A, Plou FJ, Lobato MF (2012) Analysis of neofructooligosaccharides production mediated by the extracellular β-fructofuranosidase from Xanthophyllomyces dendrorhous. Bioresour Technol 109:123–130

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Kokare C (2017) Microbial enzymes of use in industry. In: Brahmachari G, Demain AL, Adrio JL (eds) Biotechnology of microbial enzymes – production, biocatalysis and industrial applications. Elsevier, Academic Press, London, pp 267–298. https://doi.org/10.1016/b978-0-12-803725-6.00011-x

  • Liu D, Zhang R, Yang X, Wu H, Xu D, Tang Z et al (2011) Thermostable cellulase production of Aspergillus fumigatus Z5 under solid-state fermentation and its application in degradation of agricultural wastes. Int Biodeterior Biodegradation 65:717–725

    Article  CAS  Google Scholar 

  • Liu J, NanGong Z, Zhang J, Song P, Tang Y, Gao Y et al (2019) Expression and characterization of two chitinases with synergistic effect and antifungal activity from Xenorhabdus nematophila. World J Microbiol Biotechnol 35:106

    Article  PubMed  CAS  Google Scholar 

  • Lopes FM, Batista KA, Batista GLA, Fernades KF (2012) Biosensor for determination of glucose in real samples of beverages. Ciênc Technol Aliment 32:65–69

    Article  Google Scholar 

  • Ma B, Cheong LZ, Weng X, Tan CP, Shen C (2018) Lipase@ZIF-8 nanoparticles-based biosensor for direct and sensitive detection ofmethyl parathion. Electrochim Acta 283:509–516

    Article  CAS  Google Scholar 

  • Mallek-Fakhfakh H, Fakhfakh J, Masmoudi N, Rezgui F, Gargouri A, Belghith H (2017) Agricultural wastes as substrates for β-glucosidase production by Talaromyces thermophilus: role of these enzymes in enhancing waste paper saccharification. Prep Biochem Biotechnol 47(4):414–423

    Article  CAS  PubMed  Google Scholar 

  • Mamo J, Getachew P, Samuel Kuria M, Assefa F (2020) Application of milk-clotting protease from Aspergillus oryzae DRDFS13 MN726447 and Bacillus subtilis SMDFS 2B MN715837 for Danbo cheese production. J Food Qual 1:1–12

    Article  CAS  Google Scholar 

  • Market analysis report, USA (2020) Enzymes market size, share and trends analysis. https://www.grandviewresearch.com/industry-analysis/enzymes-industry

  • Matkar K, Chapla D, Divecha J, Nighojkar A, Madamwar D (2013) Production of cellulase by a newly isolated strain of Aspergillus sydowii and its optimization under submerged fermentation. Int Biodeterior Biodegradation 78:24–33

    Article  CAS  Google Scholar 

  • Mehta D, Satyanarayana T (2016) Bacterial and archaeal α-amylases: diversity and amelioration of the desirable characteristics for industrial applications. Front Microbiol 7:1129

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Maiti A (2019) Applicability of enzymes produced from different biotic species for biodegradation of textile dyes. Clean Techn Environ Policy 21:763–781

    Article  CAS  Google Scholar 

  • Mlaik N, Sayadi S, Hamza M, Khoufi S (2020) Production and characterization of β-glucosidase from Aspergillus niger fermentation: application for organic fraction of municipal solid waste hydrolysis and methane enhancement. Biotechnol Prog 36(1):2902

    Article  CAS  Google Scholar 

  • Mohsin I, Poudel N, Li DC, Papageorgiou AC (2019) Crystal structure of a GH3 β-glucosidase from the thermophilic fungus Chaetomium thermophilum. Int J Mol Sci 20(23):5962

    Article  CAS  PubMed Central  Google Scholar 

  • Mojsov K, Andronikov D, Janevski A, Jordeva S, Kertakova M, Golomeova S et al (2018) Production and application of α-amylase enzyme in textile industry. Teks Indus 66:23–28

    Google Scholar 

  • Mtibaà R, Barriuso J, de Eugenio L, Aranda E, Belbahri L, Nasri M et al (2018) Purification and characterization of a fungal laccase from the ascomycete Thielavia sp. and its role in the decolorization of a recalcitrant dye. Int J Biol Macromol 120:1744–1751

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee R, Paul T, Soren JP, Halder SK, Mondal KC, Pati BR et al (2019) Acidophilic α-amylase production from Aspergillus Niger RBP7 using potato peel as substrate: a waste to value added approach. Waste Biomass Valori 10(4):851–863

    Article  CAS  Google Scholar 

  • Musa H, Han PC, Kasim FH, Gopinath SC, Ahmad MA (2017) Turning oil palm empty fruit bunch waste into substrate for optimal lipase secretion on solid state fermentation by Trichoderma strains. Process Biochem 63:35–41

    Article  CAS  Google Scholar 

  • Nadeem H, Rashid MH, Siddique MH, Azeem F, Muzammil S, Javed MR et al (2015) Microbial invertases: a review on kinetics, thermodynamics, physiochemical properties. Process Biochem 50(8):1202–1210

    Article  CAS  Google Scholar 

  • Nandal P, Ravella SR, Kuhad RC (2013) Laccase production by Coriolopsis caperata RCK2011: optimization under solid state fermentation by Taguchi DOE methodology. Sci Rep 3:1386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nema A, Patnala SH, Mandari V, Kota S, Devarai SK (2019) Production and optimization of lipase using Aspergillus niger MTCC 872 by solid-state fermentation. Bull Natl Res Cent 43(1):82

    Article  Google Scholar 

  • Niaz M, Iftikhar T, Qureshi FF, Niaz M (2014) Extracellular lipase production by Aspergillus nidulans (MBL-S-6) under submerged fermentation. Int J Agric Biol 16:536–542

    CAS  Google Scholar 

  • Novelli PK, Barros MM, Fleuri LF (2016) Novel inexpensive fungi proteases: production by solid state fermentation and characterization. Food Chem 198:119–124

    Article  CAS  PubMed  Google Scholar 

  • Oh JM, Lee JP, Baek SC, Kim SG, Do Jo Y, Kim J et al (2018) Characterization of two extracellular β-glucosidases produced from the cellulolytic fungus Aspergillus sp. YDJ216 and their potential applications for the hydrolysis of flavone glycosides. Int J Biol Macromol 111:595–603

    Article  CAS  PubMed  Google Scholar 

  • Olajuyigbe FM, Nlekerem CM, Ogunyewo OA (2016) Production and characterization of highly thermostable β-glucosidase during the biodegradation of methyl cellulose by Fusarium oxysporum. Biochem Res Int:1–8. Article ID 3978124. https://doi.org/10.1155/2016/3978124

  • Ornla-Ied P, Sonwai S, Lertthirasuntorn S (2016) Trans-free margarine fat produced using enzymatic interesterification of rice bran oil and hard palm stearin. Food Sci Biotechnol 25(3):673–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz GE, Ponce-Mora MC, Noseda DG, Cazabat G, Saravalli C, López MC et al (2017) Pectinase production by Aspergillus giganteus in solid-state fermentation: optimization, scale-up, biochemical characterization and its application in olive-oil extraction. J In Microbiol Biot 44:197–211

    Article  CAS  Google Scholar 

  • Oyedeji O, Bakare MK, Adewale IO, Olutiola PO, Omoboye OO (2017) Optimized production and characterization of thermostable invertase from Aspergillus niger IBK1, using pineapple peel as alternate substrate. Biocatal Agric Biotechnol 9:218–223

    Article  Google Scholar 

  • Pal P, Kumar R, Banerjee S (2016) Manufacture of gluconic acid: a review towards process intensification for green production. Chem Eng Process 104:160–171

    Article  CAS  Google Scholar 

  • Pan XQ, Shih CC, Harday J (2005) Chitinase induces lysis of MCF-7 cells in culture and of human breast cancer xenograft B11–2 in SCID mice. Anticancer Res 25:3167–3172

    CAS  PubMed  Google Scholar 

  • Panchapakesan A, Shankar N (2016) Fungal cellulases: an overview. In: Gupta VK (ed) New and future developments in microbial biotechnology and bioengineering. Elsevier B.V, Amsterdam, pp 9–18. https://doi.org/10.1016/B978-0-444-63507-5.00002-2

    Chapter  Google Scholar 

  • Pasin TM, dos Anjos Moreira E, de Lucas RC, Benassi VM, Ziotti LS, Cereia M et al (2020) Novel amylase-producing fungus hydrolyzing wheat and brewing residues, Aspergillus carbonarius, discovered in tropical forest remnant. Folia Microbiol 65(1):173–184

    Article  CAS  Google Scholar 

  • Patil NS, Jadhav JP (2014) Enzymatic production of N-acetyl-D-glucosamine by solid state fermentation of chitinase by Penicillium ochrochloron MTCC 517 using agricultural residues. Int Biodeterior Biodegradation 91:9–17

    Article  CAS  Google Scholar 

  • Periasamy D, Mani S, Ambikapathi R (2019) White rot fungi and their enzymes for the treatment of industrial dye effluents. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi. Springer, Cham, pp 73–100. https://doi.org/10.1007/978-3-030-25506-0

    Chapter  Google Scholar 

  • Prasad S, Yadav AN, Singh A (2020) Impact of climate change on sustainable biofuel production. In: Yadav AN, Rastegari AA, Yadav N, Gaur R (eds) Biofuels production – sustainability and advances in microbial bioresources. Springer International Publishing, Cham, pp 79–97. https://doi.org/10.1007/978-3-030-53933-7_5

  • Qureshi M, Khare A, Pervez A, Uprit S (2015) Enzymes used in dairy industries. Int J Appl Res 1:523–527

    Google Scholar 

  • Radha S, Nithya V, Himakiran Babu R, Sridevi A, Prasad N, Narasimha G (2011) Production and optimization of acid protease by Aspergillus spp under submerged fermentation. Arch Appl Sci Res 3:155–163

    CAS  Google Scholar 

  • Rafiq M, Nadeem S, Hassan N, Hayat M, Sajjad W, Zada S et al (2020) Fungal recovery and characterization from Hindu Kush mountain range, Tirich Mir glacier, and their potential for biotechnological applications. J Basic Microbiol 60(5):444–457

    Article  CAS  PubMed  Google Scholar 

  • Rajan A, Nair AJ (2011) A comparative study on alkaline lipase production by a newly isolated Aspergillus fumigatus MTCC 9657 in submerged and solid-state fermentation using economically and industrially feasible substrate. Turk J Biol 35:569–574

    CAS  Google Scholar 

  • Ramanjaneyulu G, Rajasekhar Reddy B (2016) Optimization of xylanase production through response surface methodology by Fusarium sp. BVKT R2 Isolated from forest soil and its application in Saccharification. Front Microbiol 7:1450

    Article  PubMed  PubMed Central  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN et al (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer, Cham, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019b) Biodiversity of endophytic Fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Rebello S, Anju M, Aneesh EM, Sindhu R, Binod P, Pandey A (2017) Recent advancements in the production and application of microbial pectinases: an overview. Rev Environ Sci Bio 16(3):381–394

    Article  CAS  Google Scholar 

  • Reddy MP, Saritha KV (2015) Bio-catalysis of mango industrial waste by newly isolated Fusarium sp. (PSTF1) for pectinase production. 3 Biotech 5(6):893–900

    Article  Google Scholar 

  • Reis CBL, Sobucki L, Mazutti MA, Guedes JVC, Jacques RJS (2018) Production of Chitinase from Metarhizium anisopliae by solid-state fermentation using sugarcane bagasse as substrate. Ind Biotechnol 14:230–234

    Article  CAS  Google Scholar 

  • Revankar MS, Desai KM, Lele SS (2007) Solid-state fermentation for enhanced production of laccase using indigenously isolated Ganoderma sp. Appl Biochem Biotechnol 143:16–26

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro LF, De Lucas RC, Vitcosque GL, Ribeiro LF, Ward RJ, Rubio MV et al (2014) A novel thermostable xylanase GH10 from Malbranchea pulchella expressed in Aspergillus nidulans with potential applications in biotechnology. Biotechnol Biofuels 7(1):1–11

    Article  CAS  Google Scholar 

  • Risdianto H, Sugesty S (2015) Pretreatment of Marasmius sp. on biopulping of oil palm empty fruit bunches. Mod Appl Sci 7:5–10

    Google Scholar 

  • Rodrigues EM, Karp SG, Malucelli LC, Helm CV, Alvarez TM (2019) Evaluation of laccase production by Ganoderma lucidum in submerged and solid state fermentation using different inducers. J Basic Microbiol 59(8):784–791

    Article  CAS  PubMed  Google Scholar 

  • Rosales E, Pazos M, Sanromán MÁ (2018) Solid-state fermentation for food applications. In: Pandey A, Larroche C, Soccol CR (eds) Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 319–355. https://doi.org/10.1016/B978-0-444-63990-5.00015-3

    Chapter  Google Scholar 

  • Roshdy AM, Motawe FH, Fadel M (2020) Green polygalacturonase production by Aspergillus awamori NRC-F18 under solid-state fermentation. Egypt Pharmaceut J 19:136

    Article  Google Scholar 

  • Sadighi A, Motevalizadeh SF, Hosseini M, Ramazani A, Gorgannezhad L, Nadri H et al (2017) Metal-chelate immobilization of lipase onto polyethylenimine coated MCM-41 for apple flavor synthesis. Appl Biochem Biotechnol 182:1371–1389

    Article  CAS  PubMed  Google Scholar 

  • Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:1–11

    Article  Google Scholar 

  • Sahnoun M, Bejar S, Sayari A, Triki MA, Kriaa M, Kammoun R (2012) Production, purification and characterization of two α-amylase isoforms from a newly isolated Aspergillus Oryzae strain S2. Process Biochem 47:18–25

    Article  CAS  Google Scholar 

  • Samanta S (2020) Enhancement of characteristics and potential applications of amylases: a brief review. Am J Pure Appl Sci 2(2):24–35

    Google Scholar 

  • Sandhya C, Adapa LK, Nampoothiri KM, Binod P, Szakacs G, Pandey A (2004) Extracellular chitinase production by Trichoderma harzianum in submerged fermentation. J Basic Microbiol 44(1):49–58

    Article  CAS  PubMed  Google Scholar 

  • Santa-Rosa PS, Souza AL, Roque RA, Andrade EV, Astolfi-Filho S, Mota AJ et al (2018) Production of thermostable β-glucosidase and CMCase by Penicillium sp. LMI01 isolated from the Amazon region. Electron J Biotechnol 31:84–92

    Article  CAS  Google Scholar 

  • Santos FR, Garcia NFL, da Paz MF, Fonseca GG, Leite RSR (2016) Production and characterization of β-glucosidase from Gongronella butleri by solid-state fermentation. Afr J Biotechnol 15(16):633–641

    Article  CAS  Google Scholar 

  • Santos TC, dos Santos Reis N, Silva TP, Machado FDPP, Bonomo RCF, Franco M (2016a) Prickly palm cactus husk as a raw material for production of ligninolytic enzymes by Aspergillus niger. Food Sci Biotechnol 25(1):205–211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saranraj P, Stella D (2013) Fungal amylase – a review. Int J Microbiol Res 4(2):203–211

    Google Scholar 

  • Sarmah N, Revathi D, Sheelu G, Yamuna Rani K, Sridhar S, Mehtab V et al (2018) Recent advances on sources and industrial applications of lipases. Biotechnol Prog 34(1):5–28

    Article  CAS  PubMed  Google Scholar 

  • Saroj P, Manasa P, Narasimhulu K (2020) Optimization of xylanase production using ragi (Eleusine coracana) husk as a substrate by Aspergillus fumigatus JCM 10253 through response surface methodology. Biomass Convers Biorefin:1–11. https://doi.org/10.1007/s13399-020-00701-5

  • Sarrafzadeh M, Jafari A (2008) Use of cheap media to enhance glucose oxidase production during batch cultivation of Aspergillus niger. Pak J Biotechnol 5:11–20

    Google Scholar 

  • Savitha S, Sadhasivam S, Swaminathan K, Lin FH (2011) Fungal protease: production, purification and compatibility with laundry detergents and their wash performance. J Taiwan Inst Chem Eng 42:298–304

    Article  CAS  Google Scholar 

  • Senthivelan T, Kanagaraj J, Panda RC, Narayani T (2019) Screening and production of a potential extracellular fungal laccase from Penicillium chrysogenum: media optimization by response surface methodology (RSM) and central composite rotatable design (CCRD). Biotechnol Rep 23:344

    Google Scholar 

  • Sethi BK, Jana A, Nanda PK, DasMohapatra PK, Sahoo SL, Patra JK (2016) Production of α-amylase by Aspergillus terreus NCFT 4269.10 using pearl millet and its structural characterization. Front Plant Sci 7:639

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahryari Z, Fazaelipoor MH, Ghasemi Y, Lennartsson PR, Taherzadeh MJ (2019) Amylase and xylanase from edible fungus neurospora intermedia: production and characterization. Molecules 24(4):721

    Article  CAS  PubMed Central  Google Scholar 

  • Shankar T, Thangamathi P, Rama R, Sivakumar T (2014) Characterization of invertase from Saccharomyces cerevisiae MTCC 170. Afr J Microbiol Res 8(13):1385–1393

    Article  CAS  Google Scholar 

  • Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P et al (2019) Trichoderma: biodiversity, ecological significances, and industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer, Cham, pp 85–120. https://doi.org/10.1007/978-3-030-10480-1_3

    Chapter  Google Scholar 

  • Shekarchizadeh H, Kadivar M (2012) A study on parameters of potential cocoa butter analogue synthesis from camel hump by lipase-catalysed interesterification in supercritical CO2 using response surface methodology. Food Chem 135(1):155–160

    Article  CAS  Google Scholar 

  • Shubha J, Srinivas C (2017) Diversity and extracellular enzymes of endophytic fungi associated with Cymbidium aloifolium L. Afr J Biotechnol 16(48):2248–2258

    Google Scholar 

  • Silva BL, Geraldes FM, Murari CS, Gomes E, Da-Silva R (2014) Production and characterization of a milk-clotting protease produced in submerged fermentation by the thermophilic fungus Thermomucor indicae-seudaticae N31. Appl Biochem Biotechnol 172:1999–2011

    Article  CAS  PubMed  Google Scholar 

  • Silva LAO, Terrasan CRF, Carmona EC (2015) Purification and characterization of xylanases from Trichoderma inhamatum. Electron J Biotechnol 18:307–313

    Article  Google Scholar 

  • Singh D, Gupta N (2020) Microbial laccase: a robust enzyme and its industrial applications. Biologia 75:1183–1193

    Article  CAS  Google Scholar 

  • Singh S, Singh S, Bali V, Sharma L, Mangla J (2014) Production of fungal amylases using cheap, readily available agriresidues, for potential application in textile industry. Biomed Res Int:1–9. Article ID 215748. https://doi.org/10.1155/2014/215748

  • Singh RL, Singh PK, Singh RP (2015) Enzymatic decolorization and degradation of azo dyes-a review. Int Biodeter Biodegr 104:21–31

    Article  CAS  Google Scholar 

  • Singh G, Verma AK, Kumar V (2016) Catalytic properties, functional attributes and industrial applications of β-glucosidases. 3 Biotech 6:3

    Google Scholar 

  • Singh R, Kumar M, Mittal A, Mehta PK (2016a) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R et al (2016b) First, high quality draft genome sequence of a plant growth promoting and cold active enzymes producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11:54. https://doi.org/10.1186/s40793-016-0176-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Mittal A, Kumar M, Mehta PK (2016c) Microbial proteases in commercial applications. J Pharm Chem Biol Sci 4(3):365–374

    CAS  Google Scholar 

  • Sirohi R, Singh A, Tarafdar A, Shahi NC, Verma AK, Kushwaha A (2019) Cellulase production from pre-treated pea hulls using Trichoderma reesei under submerged fermentation. Waste Biomass Valori 10:2651–2659

    Article  CAS  Google Scholar 

  • Sorgatto M, Guimarães N, Zanoelo F, Marques M, Peixoto-Nogueira S, Giannesi G (2012) Purification and characterization of an extracellular xylanase produced by the endophytic fungus, Aspergillus terreus, grown in submerged fermentation. Afr J Biotechnol 11:8076–8084

    Article  CAS  Google Scholar 

  • Souza PM, Werneck G, Aliakbarian B, Siqueira F, Ferreira Filho EX, Perego P et al (2017) Production, purification and characterization of an aspartic protease from Aspergillus foetidus. Food Chem Toxicol 109:1103–1110

    Article  CAS  PubMed  Google Scholar 

  • Sudeep KC, Upadhyaya J, Joshi DR, Lekhak B, Kumar Chaudhary D, Raj Pant B et al (2020) Production, characterization, and industrial application of pectinase enzyme isolated from fungal strains. Fermentation 6(2):59–69

    Article  CAS  Google Scholar 

  • Suman A, Verma P, Yadav AN, Saxena AK (2015) Bioprospecting for extracellular hydrolytic enzymes from culturable thermotolerant bacteria isolated from Manikaran thermal springs. Res J Biotechnol 10:33–42

    Google Scholar 

  • Sun H, Ge X, Hao Z, Peng M (2010) Cellulase production by Trichoderma sp. on apple pomace under solid state fermentation. Afr J Biotechnol 9(2):163–166

    CAS  Google Scholar 

  • Taskin M, Ortucu S, Unver Y, Tasar OC, Ozdemir M, Kaymak HC (2016) Invertase production and molasses decolourization by cold-adapted filamentous fungus Cladosporium herbarum ER-25 in non-sterile molasses medium. Process Saf Environ 103:136–143

    Article  CAS  Google Scholar 

  • Teixeira da Silva VDC, de Souza Coto AL, de Carvalho Souza R, Bertoldi Sanchez Neves M, Gomes E, Bonilla-Rodriguez GO (2016) Effect of pH, temperature, and chemicals on the endoglucanases and β-glucosidases from the thermophilic fungus Myceliophthora heterothallica F. 2.1. 4. Obtained by solid-state and submerged cultivation. Biochem Res Int:1–9. Article ID 9781216. https://doi.org/10.1155/2016/9781216

  • Téllez-Téllez M, Fernández FJ, Montiel-González AM, Sánchez C, Díaz-Godínez G (2008) Growth and laccase production by Pleurotus ostreatus in submerged and solid-state fermentation. Appl Microbiol Biot 81:675–679

    Article  CAS  Google Scholar 

  • Tiwari R, Nain PKS, Singh S, Adak A, Saritha M, Rana S et al (2015) Cold active holocellulase cocktail from Aspergillus niger SH3: process optimization for production and biomass hydrolysis. J Taiwan Inst Chem Eng 56:57–66

    Article  CAS  Google Scholar 

  • Toledo LET, García DM, Cruz EP, Intriago LMR, Pérez JN, Chanfrau JMP (2019) Fructosyl transferases and invertases: useful enzymes in the food and feed industries. In: Kuddus M (ed) Enzymes in food biotechnology. Elsevier, pp 451–469. https://doi.org/10.1016/B978-0-12-813280-7.00026-8

  • Toscano L, Montero G, Cervantes L, Stoytcheva M, Gochev V, Beltrán M (2013) Production and partial characterization of extracellular lipase from Trichoderma harzianum by solid-state fermentation. Biotechnol Biotechnol Equip 27:3776–3781

    Article  CAS  Google Scholar 

  • Uma C, Gomathi D, Ravikumar G, Kalaiselvi M, Palaniswamy M (2012) Production and properties of invertase from a Cladosporium cladosporioides in SmF using pomegranate peel waste as substrate. Asian Pac J Trop Biomed 2:S605–S611

    Article  Google Scholar 

  • Valencia PL, Espinoza K, Ramirez C, Franco W, Urtubia A (2017) Technical feasibility of glucose oxidase as a prefermentation treatment for lowering the alcoholic degree of red wine. Am J Enol Vitic 68(3):386–389

    Article  CAS  Google Scholar 

  • Vandana T, Rao RG, Kumar SA, Swaraj S, Manpal S (2018) Enhancing production of lignin peroxidase from white rot fungi employing statistical optimization and evaluation of its potential in delignification of crop residues. Int J Curr Microbiol Appl Sci 7:2599–2621

    Article  CAS  Google Scholar 

  • Vargas M, Niehus X, Casas-Godoy L, Sandoval G (2018) Lipases as biocatalyst for biodiesel production. In: Sandoval G (ed) Methods in molecular biology. Humana Press, New York, pp 377–390. https://doi.org/10.1007/978-1-4939-8672-9_21

    Chapter  Google Scholar 

  • Vázquez-Montoya EL, Castro-Ochoa LD, Maldonado-Mendoza IE, Luna-Suárez S, Castro-Martínez C (2020) Moringa straw as cellulase production inducer and cellulolytic fungi source. Rev Argent Microbiol 52(1):4–12

    PubMed  Google Scholar 

  • Veana F, Martínez-Hernández JL, Aguilar CN, Rodríguez-Herrera R, Michelena G (2014) Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1. Braz J Microbiol 45:373–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK et al (2019) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26:1882–1895. https://doi.org/10.1016/j.sjbs.2016.01.042

    Article  PubMed  Google Scholar 

  • Vimal A, Kumar A (2017) Biotechnological production and practical application of L-asparaginase enzyme. Biotechnol Genet Eng 33(1):40–61

    Article  CAS  Google Scholar 

  • Vishwanatha KS, Rao AGA, Singh SA (2010) Acid protease production by solid-state fermentation using Aspergillus oryzae MTCC 5341: optimization of process parameters. J Ind Microbiol Biot 37:129–138

    Article  CAS  Google Scholar 

  • Vogel K (2018) Analytics of enzymes. In: Nunes CS, Kumar V (eds) Enzymes in human and animal nutrition. Academic Press, Amsterdam, pp 441–455. https://doi.org/10.1016/B978-0-12-805419-2.00023-X

    Chapter  Google Scholar 

  • Walia A, Guleria S, Mehta P, Chauhan A, Parkash J (2017) Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech 7(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang HC, Lee ARJ (2015) Recent developments in blood glucose sensors. J Food Drug Anal 23:191–200

    Article  CAS  PubMed  Google Scholar 

  • Wang YC, Hu HF, Ma JW, Yan QJ, Liu HJ, Jiang ZQ (2020) A novel high maltose-forming α-amylase from Rhizomucor miehei and its application in the food industry. Food Chem 305:125447

    Article  CAS  PubMed  Google Scholar 

  • Wattanakitjanukul N, Sukkasem C, Chiersilp B, Boonsawang P (2019) Use of palm empty fruit bunches for the production of ligninolytic enzymes by Xylaria sp. in solid state fermentation. Waste Biomass Valori:1–12. https://doi.org/10.1007/s12649-019-00710-0

  • Xia Y, Yang L, Xia L (2018) High-level production of a fungal β-glucosidase with application potentials in the cost-effective production of Trichoderma reesei cellulase. Process Biochem 70:55–60

    Article  CAS  Google Scholar 

  • Xiao YZ, Wu DK, Zhao SY, Lin WM, Gao XY (2015) Statistical optimization of alkaline protease production from Penicillium citrinum YL-1 under solid-state fermentation. Prep Biochem Biotech 45(5):447–462

    Article  CAS  Google Scholar 

  • Xu JZ, Zhang JL, Hu KH, Zhang WG (2013) The relationship between lignin peroxidase and manganese peroxidase production capacities and cultivation periods of mushrooms. Microbial Biotech 6(3):241–247

    Article  CAS  Google Scholar 

  • Xu L, Sun K, Wang F, Zhao L, Hu J, Ma H et al (2020) Laccase production by Trametes versicolor in solid-state fermentation using tea residues as substrate and its application in dye decolorization. J Environ Manag 270:110904

    Article  CAS  Google Scholar 

  • Yadav AN (2020) Recent trends in mycological research, Agricultural and medical perspective, vol 1. Springer, Cham

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108. https://doi.org/10.1007/s11274-014-1768-z

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016a) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016b) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    PubMed  Google Scholar 

  • Yadav AN, Verma P, Kumar R, Kumar V, Kumar K (2017) Current applications and future prospects of eco-friendly microbes. EU Voice 3:1–3

    Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019) Recent advancement in white biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020a) Agriculturally important fungi for sustainable agriculture, Perspective for diversity and crop productivity, vol 1. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020b) Agriculturally important fungi for sustainable agriculture, Functional annotation for crop protection, vol 2. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020c) Microbiomes of extreme environments, Biodiversity and biotechnological applications, vol 1. CRC Press, Taylor & Francis, Boca Raton

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N, Gaur R (2020d) Biofuels production – sustainability and advances in microbial bioresources. Springer, Cham

    Google Scholar 

  • Yadav AN, Singh J, Singh C, Yadav N (2020e) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Yu XW, Xu Y, Xiao R (2016) Lipases from the genus Rhizopus: characteristics, expression, protein engineering and application. Prog Lipid Res 64:57–68

    Article  CAS  PubMed  Google Scholar 

  • Zehra M, Syed MN, Sohail M (2020) Banana peels: a promising substrate for the coproduction of pectinase and xylanase from Aspergillus fumigatus MS16. Pol J Microbiol 69:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Yuan Z, Kapu NS, Chang XF, Beatson R, Trajano HL et al (2017) Increasing efficiency of enzymatic hemicellulose removal from bamboo for production of high-grade dissolving pulp. Bioresour Technol 223:40–46

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Chen L, Kang L, Liu Z, Bai Y, Yang Y et al (2018) ChiE1 from Coprinopsis cinerea is characterized as a processive exochitinase and revealed to have a significant synergistic action with endochitinase ChiIII on chitin degradation. J Agric Food Chem 66:12773–12782

    Article  CAS  PubMed  Google Scholar 

  • Zia MA, Riaz A, Rasul S, Abbas RZ (2013) Evaluation of antimicrobial activity of glucose oxidase from Aspergillus niger EBLA and Penicillium notatum. Braz Arch Biol Technol 56:956–961

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. R. Santhi, Director, Natural Resources Management, TNAU, for providing constant encouragement. The authors extend their gratitude to Mrs. E.Poorani for providing data related to fungal enzymes and Professor and Head, Department of Environmental Sciences, DNRM, TNAU, Coimbatore for providing infrastructural facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhevagi, P., Ramya, A., Priyatharshini, S., Geetha Thanuja, K., Ambreetha, S., Nivetha, A. (2021). Industrially Important Fungal Enzymes: Productions and Applications. In: Yadav, A.N. (eds) Recent Trends in Mycological Research. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-68260-6_11

Download citation

Publish with us

Policies and ethics