Skip to main content

Face Mask Invariant End-to-End Face Recognition

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12539))

Included in the following conference series:

Abstract

This paper introduces an end-to-end face recognition network that is invariant to face images with face masks. Conventional face recognition networks have degraded performance on images with face masks due to inaccurate landmark prediction and alignment results. Thus, an end-to-end network is proposed to solve the problem. We generate face mask synthesized datasets by properly aligning the face mask to images on available public datasets, such as CASIA-Webface, LFW, CALFW, CPLFW, and CFP. Then, we utilize those datasets as training and testing datasets. Second, we introduce a network that contains two modules: alignment and feature extraction modules. These modules are trained end-to-end, which makes the network invariant to face images with a face mask. Experimental results show that the proposed method achieves significant improvement from state-of-the-art face recognition network in face mask synthesized datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  2. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  4. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Tech. rep. 07–49, University of Massachusetts, Amherst (October 2007)

    Google Scholar 

  5. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  6. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)

    Google Scholar 

  7. Li, X., Wang, F., Hu, Q., Leng, C.: AirFace: lightweight and efficient model for face recognition. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  8. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere embedding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 212–220 (2017)

    Google Scholar 

  9. Masi, I., Tran, A.T., Hassner, T., Leksut, J.T., Medioni, G.: Do we really need to collect millions of faces for effective face recognition? In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 579–596. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_35

    Chapter  Google Scholar 

  10. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: Xie, X., Jones, M.W., Tam, G.K.L. (eds.) Proceedings of the British Machine Vision Conference (BMVC), pp. 41.1–41.12. BMVA Press (September 2015). https://doi.org/10.5244/C.29.41

  11. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS-W (2017)

    Google Scholar 

  12. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  13. Sengupta, S., Cheng, J., Castillo, C., Patel, V., Chellappa, R., Jacobs, D.: Frontal to profile face verification in the wild. In: IEEE Conference on Applications of Computer Vision (February 2016)

    Google Scholar 

  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1409.1556

  15. Sun, Y., Wang, X., Tang, X.: Deeply learned face representations are sparse, selective, and robust. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2015)

    Google Scholar 

  16. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2014)

    Google Scholar 

  17. Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)

    Google Scholar 

  18. Wang, Z., et al.: Masked face recognition dataset and application (2020)

    Google Scholar 

  19. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

  20. Wu, W., Kan, M., Liu, X., Yang, Y., Shan, S., Chen, X.: Recursive spatial transformer (rest) for alignment-free face recognition. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3792–3800 (2017)

    Google Scholar 

  21. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch (2014)

    Google Scholar 

  22. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016). https://doi.org/10.1109/lsp.2016.2603342

    Article  Google Scholar 

  23. Zheng, T., Deng, W.: Cross-pose LFW: a database for studying cross-pose face recognition in unconstrained environments. Tech. rep. 18–01, Beijing University of Posts and Telecommunications (February 2018)

    Google Scholar 

  24. Zheng, T., Deng, W., Hu, J.: Cross-age LFW: a database for studying cross-age face recognition in unconstrained environments. CoRR abs/1708.08197 (2017). http://arxiv.org/abs/1708.08197

  25. Zhong, Y., Chen, J., Huang, B.: Toward end-to-end face recognition through alignment learning. IEEE Signal Process. Lett. 24(8), 1213–1217 (2017). https://doi.org/10.1109/lsp.2017.2715076

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Williem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karasugi, I.P.A., Williem (2020). Face Mask Invariant End-to-End Face Recognition. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12539. Springer, Cham. https://doi.org/10.1007/978-3-030-68238-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68238-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68237-8

  • Online ISBN: 978-3-030-68238-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics