Skip to main content

A Review on Rigorous Derivation of Reduced Models for Fluid–Structure Interaction Systems

  • Chapter
  • First Online:

Part of the book series: Advances in Mathematical Fluid Mechanics ((LNMFM))

Abstract

In this paper we review and systematize the mathematical theory on justification of sixth-order thin-film equations as reduced models for various fluid–structure interaction systems in which fluids are lubricating underneath elastic structures. Justification is based on careful examination of energy estimates, weak convergence results of solutions of the original fluid–structure interaction systems to the solution of the sixth-order thin-film equation, and quantitative error estimates that provide even strong convergence results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Guy Bayada and Michéle Chambat. The transition between the Stokes equations and the Reynolds equation: a mathematical proof. Appl. Math. Optim., 14(1):73–93, 1986.

    Article  MathSciNet  Google Scholar 

  2. J. Becker and G. Grün. The thin-film equation: Recent advances and some new perspectives. J. Phys.: Condens. Matter 17 (2005), 291–307.

    Google Scholar 

  3. F. Bernis and A. Friedman. Higher order nonlinear degenerate parabolic equations. J. Diff. Eqs. 83 (1990), 179–206.

    Article  MathSciNet  Google Scholar 

  4. A. Bertozzi. The mathematics of moving contact lines in thin liquid films. Notices Amer. Math. Soc., 45 (1998), 689–697.

    MathSciNet  MATH  Google Scholar 

  5. T. Bodnar, G. P. Galdi, Š. Nečasova. Fluid-Structure Interaction in Biomedical Applications. Springer/Birkhouser. 2014.

    Google Scholar 

  6. M. Bukal and B. Muha. Rigorous derivation of a linear sixth-order thin-film equation as a reduced model for thin fluid–thin structure interaction problems. Appl. Math. Optim. (2020). https://doi.org/10.1007/s00245-020-09709-9

  7. M. Bukal and B. Muha. Justification of a nonlinear sixth-order thin-film equation as the reduced model for a fluid–structure interaction problem. In preparation (2021).

    Google Scholar 

  8. A. P. Bunger, and E. Detournay. Asymptotic solution for a penny-shaped near-surface hydraulic fracture. Engin. Fracture Mech. 72 (2005), 2468–2486.

    Article  Google Scholar 

  9. M. Bukač, S. Čanić, B. Muha and R. Glowinski. An Operator Splitting Approach to the Solution of Fluid-Structure Interaction Problems in Hemodynamics, in Splitting Methods in Communication and Imaging, Science and Engineering Eds. R. Glowinski, S. Osher, and W. Yin, New York, Springer, 2016.

    Google Scholar 

  10. P. G. Ciarlet. Mathematical Elasticity. Vol. II: Theory of Plates. North-Holland Publishing Co, Amsterdam, 1997.

    MATH  Google Scholar 

  11. P. G. Ciarlet. Mathematical Elasticity. Vol. I: Three-dimensional elasticity. North-Holland Publishing Co, Amsterdam, 1988.

    Google Scholar 

  12. Antonin Chambolle, Benoît Desjardins, Maria J. Esteban, and Céline Grandmont. Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech., 7(3):368–404, 2005.

    Article  MathSciNet  Google Scholar 

  13. G. Cimatti. How the Reynolds equation is related to the Stokes equations. Appl. Math. Optim. 10 (1983), 267–274.

    Article  MathSciNet  Google Scholar 

  14. P. Constantin, T. Dupont, R. E. Goldstein, L. P. Kadanoff, M. J. Shelley, and S. M. Zhou. Droplet breakup in a model of the Hele-Shaw cell. Phys. Rev. E 47 (1993), 4169–4181.

    Article  MathSciNet  Google Scholar 

  15. S. Čanić and A. Mikelić. Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arteries. SIAM J. Appl. Dyn. Syst., 2(3):431–463, 2003.

    Article  MathSciNet  Google Scholar 

  16. A.Ćurković and E. Marušić-Paloka. Asymptotic analysis of a thin fluid layer-elastic plate interaction problem. Applicable analysis 98 (2019), 2118–2143.

    Article  MathSciNet  Google Scholar 

  17. R. Dal Passo, H. Garcke, and G. Grün. On a fourth order degenerate parabolic equation: global entropy estimates and qualitative behaviour of solutions. SIAM J. Math. Anal. 29 (1998), 321–342.

    Article  MathSciNet  Google Scholar 

  18. S. B. Das, I. Joughin, M. Behn, I. Howat, M. A. King, D. Lizarralde, M. P. Bhatia. Fracture propagation to the base of the Greenland ice sheet during supraglacial lake drainage. Science 320 (2008), 778–781.

    Article  Google Scholar 

  19. R. Daw and J. Finkelstein. Lab on a chip. Nature Insight 442 (2006), 367–418.

    Google Scholar 

  20. P. Destuynder. Comparaison entre les modeles tridimensionnels et bidimensionnels de plaques en élasticité. ESAIM: Mathematical Modelling and Numerical Analysis 15 (1981), 331–369.

    MATH  Google Scholar 

  21. Earl H. Dowell. A modern course in aeroelasticity. Volume 217 of the Solid Mechanics and its Applications book series. Springer, 2015.

    Google Scholar 

  22. Q. Du, M. D. Gunzburger, L. S. Hou, and J. Lee. Analysis of a linear fluid-structure interaction problem. Discr. Cont. Dyn. Sys. 9 (2003), 633–650.

    Article  MathSciNet  Google Scholar 

  23. L. Giacomelli and F. Otto. Variational formulation for the lubrication approximation of the Hele-Shaw flow. Calc. Var. PDEs, 13 (2001), 377–403.

    Article  MathSciNet  Google Scholar 

  24. Céline Grandmont and Matthieu Hillairet. Existence of global strong solutions to a beam-fluid interaction system. Arch. Ration. Mech. Anal., 220(3):1283–1333, 2016.

    Article  MathSciNet  Google Scholar 

  25. G. Griso. Asymptotic behavior of structures made of plates. Anal. Appl., 3 (2005), 325–356.

    Article  MathSciNet  Google Scholar 

  26. I. J. Hewit, N. J. Balmforth, and J. R. de Bruyn. Elastic-plated gravity currents. Euro. Jnl. of Applied Mathematics 26 (2015), 1–31.

    Article  MathSciNet  Google Scholar 

  27. M. Heil, A. L. Hazel, and J. A. Smith. The mechanics of airway closure. Respiratory Physiology & Neurobiology 163 (2008), 214–221.

    Article  Google Scholar 

  28. M. Hillairet and T. Takahashi Collisions in three-dimensional fluid structure interaction problems. SIAM journal on mathematical analysis, 40(6), pp.2451–2477, 2009.

    Google Scholar 

  29. A. E. Hosoi, and L. Mahadevan. Peeling, healing and bursting in a lubricated elastic sheet. Phys. Rev. Lett. 93 (2004).

    Google Scholar 

  30. R. Huang, and Z. Suo. Wrinkling of a compressed elastic film on a viscous layer. J. Appl. Phys. 91 (2002), 1135–1142.

    Article  Google Scholar 

  31. J. R. King. The isolation oxidation of silicon the reaction-controlled case. SIAM J. Appl. Math. 49 (1989), 1064–1080.

    Article  MathSciNet  Google Scholar 

  32. E. Lauga, M. P. Brenner and H. A. Stone. Microfluidics: The No-Slip Boundary Condition. In Handbook of Experimental Fluid Dynamics Eds. J. Foss, C. Tropea and A. Yarin, Springer, New-York (2005).

    Google Scholar 

  33. Z. Li, A. M. Leshansky, L. M. Pismen, P. Tabelinga. Step-emulsification in a microfluidic device. Lab Chip 15 (2015), 1023–1031.

    Article  Google Scholar 

  34. J. R. Lister, G. G. Peng, and J. A. Neufeld. Spread of a viscous fluid beneath an elastic sheet. Phys. Rev. Lett. 111 (15) (2013).

    Google Scholar 

  35. E. Marušić-Paloka. The effects of flexion and torsion on a fluid flow through a curved pipe. Appl. Math. Optim., 44 (2001), 245–272.

    Article  MathSciNet  Google Scholar 

  36. C. Michaut. Dynamics of magmatic intrusions in the upper crust: Theory and applications to laccoliths on Earth and the Moon. J. Geophys. Res. 116 (2011).

    Google Scholar 

  37. Andro Mikelić, Giovanna Guidoboni, and Sunčica Čanić. Fluid-structure interaction in a pre-stressed tube with thick elastic walls. I. The stationary Stokes problem. Netw. Heterog. Media, 2(3):397–423, 2007.

    Google Scholar 

  38. Boris Muha and Sunčica Čanić. Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls. Arch. Ration. Mech. Anal., 207(3):919–968, 2013.

    Article  MathSciNet  Google Scholar 

  39. T. Myers. Thin films with high surface tension. SIAM Rev. 40 (1998), 441–462.

    Article  MathSciNet  Google Scholar 

  40. A. Oron, S. H. Davis, S. G. Bankoff. Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (1997), 931–980.

    Article  Google Scholar 

  41. G. P. Panasenko, R. Stavre. Asymptotic analysis of a periodic flow in a thin channel with visco-elastic wall. J. Math. Pures Appl. 85 (2006), 558–579.

    Article  MathSciNet  Google Scholar 

  42. G. P. Panasenko, R. Stavre. Asymptotic analysis of a viscous fluid-thin plate interaction: Periodic flow. Mathematical Models and Methods in Applied Sciences 24 (2014), 1781–1822.

    Article  MathSciNet  Google Scholar 

  43. D. Pihler-Puzović, P. Illien, M. Heil, and A. Juel. Suppression of complex fingerlike patterns at the interface between air and a viscous fluid by elastic membranes. Phys. Rev. Lett. 108 (2012).

    Google Scholar 

  44. D. Pihler-Puzović, A. Juel and M. Heil. The interaction between viscous fingering and wrinkling in elastic-walled Hele-Shaw cells. Phys. Fluids 26 (2014), 022102.

    Article  Google Scholar 

  45. O. Reynolds. On the theory of lubrication and its application to M. Beauchamp Tower’s experiments. Phil. Trans. Roy. Soc. London A 117 (1886), 157–234.

    Google Scholar 

  46. A. Z. Szeri. Fluid Film Lubrication. Cambridge University Press, Cambridge, 2012.

    MATH  Google Scholar 

  47. H. A. Stone, A. D. Stroock, A. Ajdari. Engineering Flows in Small Devices: Microfluidics Toward a Lab-on-a-Chip. Annual Review of Fluid Mechanics 36 (2004), 381–411.

    Article  Google Scholar 

  48. J. Tambača, S. Čanić, and A. Mikelić. Effective model of the fluid flow through elastic tube with variable radius. In XI. Mathematikertreffen Zagreb-Graz, volume 348 of Grazer Math. Ber., pages 91–112. Karl-Franzens-Univ. Graz, Graz, 2005.

    Google Scholar 

  49. M. Taroni, and D. Vella. Multiple equilibria in a simple elastocapillary system. J. Fluid Mech. 712 (2012), 273–294.

    Article  MathSciNet  Google Scholar 

  50. I. Titze. Principles of voice production. Prentice Hall, New York, 1994.

    Google Scholar 

  51. V. C. Tsai, and J. R. Rice. Modeling turbulent hydraulic fracture near a free surface. J. App. Mech. 79 (2012).

    Google Scholar 

  52. J. L. Vazquez. The Porous Medium Equation: Mathematical Theory. Oxford Science Publications, Oxford, 2007.

    MATH  Google Scholar 

  53. K. Yang, P. Sun, L. Wang, J. Xu, L. Zhang. Modeling and simulations for fluid and rotating structure interactions. Comp. Meth. App. Mech. Eng. 311 (2016), 788–814.

    Article  MathSciNet  Google Scholar 

  54. A. Yenduri, R. Ghoshal, and R. K. Jaiman. A new partitioned staggered scheme for flexible multibody interactions with strong inertial effects. Computer Methods in Applied Mechanics and Engineering 315 (2017), 316–347.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Muha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bukal, M., Muha, B. (2021). A Review on Rigorous Derivation of Reduced Models for Fluid–Structure Interaction Systems. In: Bodnár, T., Galdi, G.P., Nečasová, Š. (eds) Waves in Flows. Advances in Mathematical Fluid Mechanics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-68144-9_8

Download citation

Publish with us

Policies and ethics