Skip to main content

Semigroup Theory for the Stokes Operator with Navier Boundary Condition on Lp Spaces

  • Chapter
  • First Online:
Waves in Flows

Abstract

We consider the incompressible Navier–Stokes equations in a bounded domain with \(\mathcal {C}^{1,1}\) boundary, completed with slip boundary condition. We study the general semigroup theory in L p-spaces related to the Stokes operator with Navier boundary condition where the slip coefficient α is a non-smooth scalar function. It is shown that the strong and weak Stokes operators with Navier conditions admit analytic semigroup with bounded pure imaginary powers. We also show that for α large, the weak and strong solutions of both the linear and nonlinear systems are bounded uniformly with respect to α. This justifies mathematically that the solution of the Navier–Stokes problem with slip condition converges in the energy space to the solution of the Navier–Stokes with no-slip boundary condition as α →.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. A. Adams. Sobolev spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65.

    Google Scholar 

  2. H. Al Baba, C. Amrouche, and M. Escobedo. Analyticity of the semi-group generated by the Stokes operator with Navier-type boundary conditions on L p-spaces. In Recent advances in partial differential equations and applications, volume 666 of Contemp. Math., pages 23–40. Amer. Math. Soc., Providence, RI, 2016.

    Google Scholar 

  3. H. Al Baba, C. Amrouche, and M. Escobedo. Semi-group theory for the Stokes operator with Navier-type boundary conditions on L p-spaces. Arch. Ration. Mech. Anal., 223(2):881–940, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Al Baba, C. Amrouche, and A. Rejaiba. The time-dependent Stokes problem with Navier slip boundary conditions on L p-spaces. Analysis (Berlin), 36(4):269–285, 2016.

    MathSciNet  MATH  Google Scholar 

  5. H. Amann. Linear and quasilinear parabolic problems. Vol. I, volume 89 of Monographs in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1995. Abstract linear theory.

    Google Scholar 

  6. C. Amrouche, A. Ghosh, C. Conca, and P. Acevedo. Stokes and Navier-Stokes equations with Navier boundary condition. arXiv: https://arxiv.org/abs/1805.07760.

  7. C. Amrouche and A. Rejaiba. L p-theory for Stokes and Navier-Stokes equations with Navier boundary condition. J. Differential Equations, 256(4):1515–1547, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Barbu. Nonlinear semigroups and differential equations in Banach spaces. Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. Translated from the Romanian.

    Google Scholar 

  9. H. Beirão da Veiga. Remarks on the Navier-Stokes evolution equations under slip type boundary conditions with linear friction. Port. Math. (N.S.), 64(4):377–387, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Discrete Contin. Dyn. Syst., (Dynamical systems, differential equations and applications. 8th AIMS Conference. Suppl. Vol. I):135–144, 2011.

    Google Scholar 

  11. J. Bourgain. Some remarks on Banach spaces in which martingale difference sequences are unconditional. Ark. Mat., 21(2):163–168, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  12. N. V. Chemetov and F. Cipriano. Inviscid limit for Navier-Stokes equations in domains with permeable boundaries. Appl. Math. Lett., 33:6–11, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Clopeau, A. Mikelić, and R. Robert. On the vanishing viscosity limit for the incompressible Navier-Stokes equations with the friction type boundary conditions. Nonlinearity, 11(6):1625–1636, 1998.

    Google Scholar 

  14. H Fujita and T Kato. On the Navier-Stokes initial value problem. I. Arch. Rational Mech. Anal., 16:269–315, 1964.

    Google Scholar 

  15. D. Gérard-Varet and N. Masmoudi. Relevance of the slip condition for fluid flows near an irregular boundary. Communications in Mathematical Physics, 295(1):99–137, Apr 2010.

    Google Scholar 

  16. Y. Giga. The Stokes operator in L r spaces. Proc. Japan Acad. Ser. A Math. Sci., 57(2):85–89, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Giga. Weak and strong solutions of the Navier-Stokes initial value problem. Publ. Res. Inst. Math. Sci., 19(3):887–910, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Giga. Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system. J. Differential Equations, 62(2):186–212, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Giga and T. Miyakawa. Solutions in L r of the Navier-Stokes initial value problem. Arch. Rational Mech. Anal., 89(3):267–281, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Giga and H. Sohr. Abstract L p estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal., 102(1):72–94, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Grisvard. Elliptic problems in nonsmooth domains, volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1985.

    Google Scholar 

  22. D. Iftimie and F. Sueur. Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions. Arch. Ration. Mech. Anal., 199(1):145–175, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  23. Sh. Itoh, N. Tanaka, and A. Tani. Stability of steady-states solution to Navier-Stokes equations with general Navier slip boundary condition. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 362(Kraevye Zacachi Matematicheskoı̆ Fiziki i Smezhnye Voprosy Teorii Funktsiı̆. 39):153–175, 366, 2008.

    Google Scholar 

  24. J. P. Kelliher. Navier-Stokes equations with Navier boundary conditions for a bounded domain in the plane. SIAM J. Math. Anal., 38(1):210–232, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Komatsu. Fractional powers of operators. Pacific J. Math., 19:285–346, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Kučera and J. Neustupa. On L 3-stability of strong solutions of the Navier-Stokes equations with the Navier-type boundary conditions. J. Math. Anal. Appl., 405(2):731–737, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  27. N. Masmoudi and F. Rousset. Uniform regularity for the Navier-Stokes equation with Navier boundary condition. Arch. Ration. Mech. Anal., 203(2):529–575, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  28. N. Masmoudi and L. Saint-Raymond. From the Boltzmann equation to the Stokes-Fourier system in a bounded domain. Communications on Pure and Applied Mathematics, 56(9):1263–1293.

    Google Scholar 

  29. J. C. Maxwell. On stresses in rarified gases arising from inequalities of temperature. Philosophical Transactions of the Royal Society of London, 170:231–256, 1879.

    Article  MATH  Google Scholar 

  30. S. Monniaux and E. M. Ouhabaz. The incompressible Navier-Stokes system with time-dependent Robin-type boundary conditions. J. Math. Fluid Mech., 17(4):707–722, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  31. C.L.M.H. Navier. Mémoire sur les lois du mouvement des fluides. Mém. Acad. Sci. Inst. de France (2), pages 389–440, 1823.

    Google Scholar 

  32. D. Pal, N. Rudraiah, and R. Devanathan. The effects of slip velocity at a membrane surface on blood flow in the microcirculation. Journal of Mathematical Biology, 26(6):705–712, Dec 1988.

    Google Scholar 

  33. A. Pazy. Semigroups of linear operators and applications to partial differential equations, volume 44 of Applied Mathematical Sciences. Springer-Verlag, New York, 1983.

    Google Scholar 

  34. J. Prüss and G. Simonett. Moving interfaces and quasilinear parabolic evolution equations, volume 105 of Monographs in Mathematics. Birkhäuser/Springer, [Cham], 2016.

    Google Scholar 

  35. J. L. Rubio De Francia. Martingale and integral transforms of Banach space valued functions. In Probability and Banach spaces (Zaragoza, 1985), volume 1221 of Lecture Notes in Math., pages 195–222. Springer, Berlin, 1986.

    Google Scholar 

  36. N. Seloula. Mathematical analysis and numerical approximation of the stokes and Navier-Stokes equations with non standard boundary conditions. PhD Thesis, Université de Pau et des Pays de l’Adour, 2010, HAl.

    Google Scholar 

  37. C. G. Simader and H. Sohr. A new approach to the Helmholtz decomposition and the Neumann problem in L q-spaces for bounded and exterior domains. In Mathematical problems relating to the Navier-Stokes equation, volume 11 of Ser. Adv. Math. Appl. Sci., pages 1–35. World Sci. Publ., River Edge, NJ, 1992.

    Google Scholar 

  38. R. Temam. Navier-Stokes equations. Theory and numerical analysis. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Studies in Mathematics and its Applications, Vol. 2.

    Google Scholar 

  39. H. Triebel. Interpolation theory, function spaces, differential operators. VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.

    MATH  Google Scholar 

  40. Y. Xiao and Z. Xin. On 3D Lagrangian Navier-Stokes α model with a class of vorticity-slip boundary conditions. J. Math. Fluid Mech., 15(2):215–247, 2013.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chérif Amrouche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amrouche, C., Escobedo, M., Ghosh, A. (2021). Semigroup Theory for the Stokes Operator with Navier Boundary Condition on Lp Spaces. In: Bodnár, T., Galdi, G.P., Nečasová, Š. (eds) Waves in Flows. Advances in Mathematical Fluid Mechanics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-68144-9_1

Download citation

Publish with us

Policies and ethics