Skip to main content

Fundamental of Reactive and Thermal Processes in Electrochemically Assisted Soil Remediation

  • Chapter
  • First Online:
Electrochemically Assisted Remediation of Contaminated Soils

Part of the book series: Environmental Pollution ((EPOL,volume 30))

Abstract

Electrokinetic soil remediation involves different processes that allow the transport of pollutants in the soil: electromigration, electrophoresis, and electroosmosis. Furthermore, the application of an electric potential to the electrodes inserted in the soil also leads to other reactive and thermal processes: electrolysis and electrical heating. These last ones significantly influence the removal of pollutants retained in the soil, promoting several chemical and physical changes in the soil during remediation. Based on the advantages of these processes, novel treatment technologies combined with electrokinetic remediation have been developed for the removal of several pollutants. In this chapter, the fundamentals of electrolysis and electrical heating are described, in addition to the integration of different reactive and thermal processes with electrokinetic remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.N. Mulligan, R.N. Yong, B.F. Gibbs, Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng. Geol. 60(1–4), 193–207 (2001). https://doi.org/10.1016/S0013-7952(00)00101-0

    Article  Google Scholar 

  2. C.N. Mulligan, R.N. Yong, B.F. Gibbs, Surfactant-enhanced remediation of contaminated soil: a review. Eng. Geol. 60(1–4), 371–380 (2001). https://doi.org/10.1016/S0013-7952(00)00117-4

    Article  Google Scholar 

  3. S.C. Wilson, K.C. Jones, Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): A review. Environ. Pollut. 81(3), 229–249 (1993). https://doi.org/10.1016/0269-7491(93)90206-4

    Article  CAS  Google Scholar 

  4. J. Virkutyte, M. Sillanpää, P. Latostenmaa, Electrokinetic soil remediation – critical overview. Sci. Total Environ. 289(1–3), 97–121 (2002). https://doi.org/10.1016/S0048-9697(01)01027-0

  5. K.R. Reddy, C. Cameselle, Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater. Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater (John Wiley and Sons, Hoboken, 2009). https://doi.org/10.1002/9780470523650

    Book  Google Scholar 

  6. M.A. Rodrigo, N. Oturan, M.A. Oturan, Electrochemically assisted remediation of pesticides in soils and water: a review. Chem. Rev. 114(17), 8720–8745 (2014). https://doi.org/10.1021/cr500077e

    Article  CAS  Google Scholar 

  7. R.E. Saichek, K.R. Reddy, Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: a review. Crit. Rev. Environ. Sci. Technol. 35(2), 115–192 (2005). https://doi.org/10.1080/10643380590900237

    Article  CAS  Google Scholar 

  8. A.T. Yeung, Chapters, Electrokinetic flow processes in porous media and their applications. Adv. Porous Media 2 (1994)

    Google Scholar 

  9. R. López-Vizcaíno, C. Sáez, E. Mena, J. Villaseñor, P. Cañizares, M.A. Rodrigo, Electro-osmotic fluxes in multi-well electro-remediation processes. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 46(13), 1549–1557 (2011). https://doi.org/10.1080/10934529.2011.609458

    Article  CAS  Google Scholar 

  10. C. Cameselle, K.R. Reddy, Development and enhancement of electro-osmotic flow for the removal of contaminants from soils. Electrochim. Acta 86, 10–22 (2012). https://doi.org/10.1016/j.electacta.2012.06.121

    Article  CAS  Google Scholar 

  11. Á. Yustres, R. López-Vizcaíno, C. Sáez, P. Cañizares, M.A. Rodrigo, V. Navarro, Water transport in electrokinetic remediation of unsaturated kaolinite. Experimental and numerical study. Sep. Purif. Technol. 192, 196–204 (2018). https://doi.org/10.1016/j.seppur.2017.10.009

    Article  CAS  Google Scholar 

  12. R.E. Saichek, K.R. Reddy, Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil. Chemosphere 51(4), 273–287 (2003). https://doi.org/10.1016/S0045-6535(02)00849-4

    Article  CAS  Google Scholar 

  13. M. Villen-Guzman, J.M. Paz-Garcia, J.M. Rodriguez-Maroto, C. Gomez-Lahoz, F. Garcia-Herruzo, Acid enhanced electrokinetic remediation of a contaminated soil using constant current density: strong vs. weak acid. Separ. Sci. Tech. 49(10), 1461–1468 (2014). https://doi.org/10.1080/01496395.2014.898306

    Article  CAS  Google Scholar 

  14. Y.B. Acar, R.J. Gale, A.N. Alshawabkeh, R.E. Marks, S. Puppala, M. Bricka, R. Parker, Electrokinetic remediation: basics and technology status. J. Hazard. Mater. 40(2), 117–137 (1995). https://doi.org/10.1016/0304-3894(94)00066-P

    Article  CAS  Google Scholar 

  15. R. López-Vizcaíno, V. Navarro, M.J. León, C. Risco, M.A. Rodrigo, C. Sáez, P. Cañizares, Scale-up on electrokinetic remediation: engineering and technological parameters. J. Hazard. Mater. 315, 135–143 (2016). https://doi.org/10.1016/j.jhazmat.2016.05.012

    Article  CAS  Google Scholar 

  16. R. Lageman, R.L. Clarke, W. Pool, Electro-reclamation, a versatile soil remediation solution. Eng. Geol. 77(3), 191–201 (2005). https://doi.org/10.1016/j.enggeo.2004.07.010

    Article  Google Scholar 

  17. R. López-Vizcaíno, E.V. dos Santos, A. Yustres, M.A. Rodrigo, V. Navarro, C.A. Martínez-Huitle, Calcite buffer effects in electrokinetic remediation of clopyralid-polluted soils. Sep. Purif. Technol. 212, 376–387 (2019). https://doi.org/10.1016/j.seppur.2018.11.034

    Article  CAS  Google Scholar 

  18. S.K. Puppala, A.N. Alshawabkeh, Y.B. Acar, R.J. Gale, M. Bricka, Enhanced electrokinetic remediation of high sorption capacity soil. J. Hazard. Mater. 55(1), 203–220 (1997). https://doi.org/10.1016/S0304-3894(97)00011-3

    Article  CAS  Google Scholar 

  19. J.M. Paz-García, B. Johannesson, L.M. Ottosen, A.N. Alshawabkeh, A.B. Ribeiro, J.M. Rodríguez-Maroto, Modeling of electrokinetic desalination of bricks. Electrochim. Acta 86, 213–222 (2012). https://doi.org/10.1016/j.electacta.2012.05.132

    Article  CAS  Google Scholar 

  20. P. Isosaari, R. Piskonen, P. Ojala, S. Voipio, K. Eilola, E. Lehmus, M. Itävaara, Integration of electrokinetics and chemical oxidation for the remediation of creosote-contaminated clay. J. Hazard. Mater. 144(1), 538–548 (2007). https://doi.org/10.1016/j.jhazmat.2006.10.068

    Article  CAS  Google Scholar 

  21. F. Sopaj, M.A. Rodrigo, N. Oturan, F.I. Podvorica, J. Pinson, M.A. Oturan, Influence of the anode materials on the electrochemical oxidation efficiency. Application to oxidative degradation of the pharmaceutical amoxicillin. Chem. Eng. J. 262, 286–294 (2015). https://doi.org/10.1016/j.cej.2014.09.100

    Article  CAS  Google Scholar 

  22. P. Cañizares, C. Sáez, A. Sánchez-Carretero, M.A. Rodrigo, Synthesis of novel oxidants by electrochemical technology. J. Appl. Electrochem. 39(11), 2143–2149 (2009). https://doi.org/10.1007/s10800-009-9792-7

    Article  CAS  Google Scholar 

  23. E. Méndez, M. Pérez, O. Romero, E.D. Beltrán, S. Castro, J.L. Corona, A. Corona, M.C. Cuevas, E. Bustos, Effects of electrode material on the efficiency of hydrocarbon removal by an electrokinetic remediation process. Electrochim. Acta 86, 148–156 (2012). https://doi.org/10.1016/j.electacta.2012.04.042

    Article  CAS  Google Scholar 

  24. J.M. Paz-Garcia, K. Baek, I.D. Alshawabkeh, A.N. Alshawabkeh, A generalized model for transport of contaminants in soil by electric fields. J. Environ. Sci. Health A 47(2), 308–318 (2012). https://doi.org/10.1080/10934529.2012.640911

    Article  CAS  Google Scholar 

  25. A.T. Yeung, Y.-Y. Gu, A review on techniques to enhance electrochemical remediation of contaminated soils. J. Hazard. Mater. 195, 11–29 (2011). https://doi.org/10.1016/j.jhazmat.2011.08.047

    Article  CAS  Google Scholar 

  26. R. López Vizcaíno, A. Yustres, L. Asensio, C. Saez, P. Cañizares, M.A. Rodrigo, V. Navarro, Enhanced electrokinetic remediation of polluted soils by anolyte pH conditioning. Chemosphere 199, 477–485 (2018). https://doi.org/10.1016/j.chemosphere.2018.02.038

    Article  CAS  Google Scholar 

  27. L.M. Ottosen, H.K. Hansen, A.B. Ribeiro, A. Villumsen, Removal of Cu, Pb and Zn in an applied electric field in calcareous and non-calcareous soils. J. Hazard. Mater. 85(3), 291–299 (2001). https://doi.org/10.1016/S0304-3894(01)00231-X

    Article  CAS  Google Scholar 

  28. D.-M. Zhou, C.-F. Deng, L. Cang, Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents. Chemosphere 56(3), 265–273 (2004). https://doi.org/10.1016/j.chemosphere.2004.02.033

    Article  CAS  Google Scholar 

  29. A.T. Yeung, J.K. Mitchell, Coupled fluid, electrical and chemical flows in soil. Geotechnique 43(1), 121–134 (1993). https://doi.org/10.1680/geot.1993.43.1.121

    Article  Google Scholar 

  30. L. Ren, H. Lu, L. He, Y. Zhang, Enhanced electrokinetic technologies with oxidization–reduction for organically-contaminated soil remediation. Chem. Eng. J. 247, 111–124 (2014). https://doi.org/10.1016/j.cej.2014.02.107

    Article  CAS  Google Scholar 

  31. Y. Yukselen-Aksoy, K.R. Reddy, Effect of soil composition on electrokinetically enhanced persulfate oxidation of polychlorobiphenyls. Electrochim. Acta 86, 164–169 (2012). https://doi.org/10.1016/j.electacta.2012.03.049

    Article  CAS  Google Scholar 

  32. C. Liang, Z.-S. Wang, C.J. Bruell, Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66(1), 106–113 (2007). https://doi.org/10.1016/j.chemosphere.2006.05.026

    Article  CAS  Google Scholar 

  33. X. Xie, Y. Zhang, W. Huang, S. Huang, Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation. J. Environ. Sci. 24(5), 821–826 (2012). https://doi.org/10.1016/S1001-0742(11)60844-9

    Article  CAS  Google Scholar 

  34. C. Cameselle, S. Gouveia, Electrokinetic remediation for the removal of organic contaminants in soils. Curr. Opin. Electrochem. 11, 41–47 (2018). https://doi.org/10.1016/j.coelec.2018.07.005

    Article  CAS  Google Scholar 

  35. G. Fan, L. Cang, H.I. Gomes, D. Zhou, Electrokinetic delivery of persulfate to remediate PCBs polluted soils: effect of different activation methods. Chemosphere 144, 138–147 (2016). https://doi.org/10.1016/j.chemosphere.2015.08.074

    Article  CAS  Google Scholar 

  36. M.Z. Wu, D.A. Reynolds, A. Fourie, D.G. Thomas, Optimal field approaches for electrokinetic in situ oxidation remediation. Ground Water Monit. Remed. 33(1), 62–74 (2013). https://doi.org/10.1111/j.1745-6592.2012.01410.x

    Article  CAS  Google Scholar 

  37. A.I.A. Chowdhury, J.I. Gerhard, D. Reynolds, B.E. Sleep, D.M. O'Carroll, Electrokinetic-enhanced permanganate delivery and remediation of contaminated low permeability porous media. Water Res. 113, 215–222 (2017). https://doi.org/10.1016/j.watres.2017.02.005

    Article  CAS  Google Scholar 

  38. P. Thepsithar, E.P.L. Roberts, Removal of phenol from contaminated kaolin using electrokinetically enhanced in situ chemical oxidation. Environ. Sci. Technol. 40(19), 6098–6103 (2006). https://doi.org/10.1021/es060883f

    Article  CAS  Google Scholar 

  39. S. H-w, Y. Q-s, Influence of pyrene combination state in soils on its treatment efficiency by Fenton oxidation. J. Environ. Manag. 88(3), 556–563 (2008). https://doi.org/10.1016/j.jenvman.2007.03.031

    Article  CAS  Google Scholar 

  40. M. Pazos, O. Iglesias, J. Gómez, E. Rosales, M.A. Sanromán, Remediation of contaminated marine sediment using electrokinetic–Fenton technology. J. Ind. Eng. Chem. 19(3), 932–937 (2013). https://doi.org/10.1016/j.jiec.2012.11.010

    Article  CAS  Google Scholar 

  41. G.C.C. Yang, C.-Y. Liu, Remediation of TCE contaminated soils by in situ EK-Fenton process. J. Hazard. Mater. 85(3), 317–331 (2001). https://doi.org/10.1016/S0304-3894(01)00288-6

    Article  CAS  Google Scholar 

  42. S.-S. Kim, J.-H. Kim, S.-J. Han, Application of the electrokinetic-Fenton process for the remediation of kaolinite contaminated with phenanthrene. J. Hazard. Mater. 118(1), 121–131 (2005). https://doi.org/10.1016/j.jhazmat.2004.10.005

    Article  CAS  Google Scholar 

  43. T. Alcántara, M. Pazos, S. Gouveia, C. Cameselle, M.A. Sanromán, Remediation of phenanthrene from contaminated kaolinite by electroremediation-Fenton technology. J. Environ. Sci. Health A 43(8), 901–906 (2008). https://doi.org/10.1080/10934520801974418

    Article  CAS  Google Scholar 

  44. I.C. Paixão, R. López-Vizcaíno, A.M.S. Solano, C.A. Martínez-Huitle, V. Navarro, M.A. Rodrigo, E.V. dos Santos, Electrokinetic-Fenton for the remediation low hydraulic conductivity soil contaminated with petroleum. Chemosphere 248, 126029 (2020). https://doi.org/10.1016/j.chemosphere.2020.126029

    Article  CAS  Google Scholar 

  45. S. Barba, R. López-Vizcaíno, C. Saez, J. Villaseñor, P. Cañizares, V. Navarro, M.A. Rodrigo, Electro-bioremediation at the prototype scale: what it should be learned for the scale-up. Chem. Eng. J. 334, 2030–2038 (2018). https://doi.org/10.1016/j.cej.2017.11.172

    Article  CAS  Google Scholar 

  46. R. López-Vizcaíno, C. Risco, J. Isidro, S. Rodrigo, C. Saez, P. Cañizares, V. Navarro, M.A. Rodrigo, Scale-up of the electrokinetic fence technology for the removal of pesticides. Part II: Does size matter for removal of herbicides? Chemosphere 166, 549–555 (2017). https://doi.org/10.1016/j.chemosphere.2016.09.114

    Article  CAS  Google Scholar 

  47. I.C. Ossai, A. Ahmed, A. Hassan, F.S. Hamid, Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environ. Technol. Innov. 17, 100526 (2020). https://doi.org/10.1016/j.eti.2019.100526

    Article  Google Scholar 

  48. J.E. Vidonish, K. Zygourakis, C.A. Masiello, G. Sabadell, P.J.J. Alvarez, Thermal treatment of hydrocarbon-impacted soils: a review of technology innovation for sustainable remediation. Engineering 2(4), 426–437 (2016). https://doi.org/10.1016/J.ENG.2016.04.005

    Article  CAS  Google Scholar 

  49. F. Kastanek, P. Topka, K. Soukup, Y. Maleterova, K. Demnerova, P. Kastanek, O.J.J.C.P. Solcova, Remediation of contaminated soils by thermal desorption; effect of benzoyl peroxide addition. J. Clean. Prod. 125, 309–313 (2016)

    Article  CAS  Google Scholar 

  50. C. Zhao, Y. Dong, Y. Feng, Y. Li, Y. Dong, Thermal desorption for remediation of contaminated soil: a review. Chemosphere 221, 841–855 (2019). https://doi.org/10.1016/j.chemosphere.2019.01.079

    Article  CAS  Google Scholar 

  51. J. Liu, H. Zhang, Z. Yao, X. Li, J. Tang, Thermal desorption of PCBs contaminated soil with calcium hydroxide in a rotary kiln. Chemosphere 220, 1041–1046 (2019). https://doi.org/10.1016/j.chemosphere.2019.01.031

    Article  CAS  Google Scholar 

  52. G.C. Scholes, J.I. Gerhard, G.P. Grant, D.W. Major, J.E. Vidumsky, C. Switzer, J.L. Torero, Smoldering remediation of coal-tar-contaminated soil: pilot field tests of STAR. Environ. Sci. Technol. 49(24), 14334–14342 (2015). https://doi.org/10.1021/acs.est.5b03177

    Article  CAS  Google Scholar 

  53. G.P. Grant, D. Major, G.C. Scholes, J. Horst, S. Hill, M.R. Klemmer, J.N.J.R.J. Couch, Smoldering combustion (STAR) for the treatment of contaminated soils: examining limitations and defining success. Remediat. J. 26(3), 27–51 (2016)

    Article  Google Scholar 

  54. P. Pironi, C. Switzer, J.I. Gerhard, G. Rein, J.L. Torero, Self-sustaining smoldering combustion for NAPL remediation: laboratory evaluation of process sensitivity to key parameters. Environ. Sci. Technol. 45(7), 2980–2986 (2011). https://doi.org/10.1021/es102969z

    Article  CAS  Google Scholar 

  55. E.K. Nyer, In Situ Treatment Technology (CRC Press, Boca Raton, 2000)

    Book  Google Scholar 

  56. V. Bucala, H. Saito, J.B. Howard, W.A. Peters, Thermal treatment of fuel oil-contaminated soils under rapid heating conditions. Environ. Sci. Technol. 28(11), 1801–1807 (1994). https://doi.org/10.1021/es00060a008

    Article  CAS  Google Scholar 

  57. R.S. Baker, M. Kuhlman, in A Description of the Mechanisms of In-Situ Thermal Destruction (ISTD) Reactions. Current Practices in Oxidation and Reduction Technologies for Soil and Groundwater, and Presented at the 2nd International Conference on Oxidation and Reduction Technologies for Soil and Groundwater, ORTs-2, Toronto, Ontario, Canada (2002)

    Google Scholar 

  58. J.E. Vidonish, K. Zygourakis, C.A. Masiello, X. Gao, J. Mathieu, P.J.J. Alvarez, Pyrolytic treatment and fertility enhancement of soils contaminated with heavy hydrocarbons. Environ. Sci. Technol. 50(5), 2498–2506 (2016). https://doi.org/10.1021/acs.est.5b02620

    Article  CAS  Google Scholar 

  59. R.M. Abousnina, A. Manalo, J. Shiau, W. Lokuge, An overview on oil contaminated sand and its engineering applications. Int. J. GEOMATE 10(1), 1615–1622 (2016)

    Google Scholar 

  60. F.I. Khan, T. Husain, R. Hejazi, An overview and analysis of site remediation technologies. J. Environ. Manag. 71(2), 95–122 (2004). https://doi.org/10.1016/j.jenvman.2004.02.003

    Article  Google Scholar 

  61. A.T. Yeung, Remediation Technologies for Contaminated Sites, in Advances in Environmental Geotechnics, ed. by Y. Chen, L. Zhan, X. Tang, (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010), pp. 328–369

    Chapter  Google Scholar 

  62. S. Ballesteros, J.M. Rincón, B. Rincón-Mora, M.M. Jordán, Vitrification of urban soil contamination by hexavalent chromium. J. Geochem. Explor. 174, 132–139 (2017). https://doi.org/10.1016/j.gexplo.2016.07.011

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Spanish Ministry of Science, Innovation and Universities through “Juan de la Cierva-Incorporación” postdoctoral grant (IJC2018-036241-I) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Cotillas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cotillas, S. (2021). Fundamental of Reactive and Thermal Processes in Electrochemically Assisted Soil Remediation. In: Rodrigo, M.A., Dos Santos, E.V. (eds) Electrochemically Assisted Remediation of Contaminated Soils. Environmental Pollution, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-68140-1_3

Download citation

Publish with us

Policies and ethics