Skip to main content

Electrochemically Assisted Thermal-Based Technologies for Soil Remediation

  • Chapter
  • First Online:
Electrochemically Assisted Remediation of Contaminated Soils

Part of the book series: Environmental Pollution ((EPOL,volume 30))

Abstract

In situ thermal remediation (ISTR) technologies are considered a good option to both, evaporate volatile organic contaminants (VOCs) and enhance the mass transport of dissolved chemicals, avoiding the drawbacks associated with soil excavation. Subsurface heating can be promoted by using direct current (DC) or alternating current (AC), thanks to the Joule effect that arises when electricity is converted into heat as it flows through a low conductivity medium like soil. In this chapter, after a short introduction about existing ISTR technologies, electrochemical ISTR (i.e., electrothermal methods), is reviewed with detail. The fundamentals, mathematical considerations, and modelling are described, thereby presenting some examples that clearly reveal the temperature dependence of key physical properties of soil and water, as well as the scale effect. Several companies that have successfully scaled-up the DC and AC electrothermal techniques are mentioned throughout the chapter. A key idea to keep in mind is that the lowest effective temperature should be the one chosen in ISTR to avoid collateral effects like excessive energy consumption and negative effects on soil properties, including loss of fertility. Coupling of electrical heating with simultaneous in situ chemical oxidation (ISCO) via generation of highly oxidizing species like sulfate radicals enables the operation at milder temperature, thus reducing the electrical power consumption and allowing the degradation of pollutants in addition to their desorption/volatilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://waste-management-world.com/a/340-000-reasons-to-choose-in-situ-remediation-instead-of-ex-situ-and-mass-transfer

  2. M.T. Ricart, M. Pazos, S. Gouveia, C. Cameselle, M.A. Sanromán, Removal of organic pollutants and heavy metals in soils by electrokinetic remediation. J. Environ. Sci. Health A 43, 871–875 (2008)

    Article  CAS  Google Scholar 

  3. M.A. Rodrigo, N. Oturan, M.A. Oturan, Electrochemically assisted remediation of pesticides in soils and water: a review. Chem. Rev. 114, 8720–8745 (2014)

    Article  CAS  Google Scholar 

  4. O. Cuevas, R.A. Herrada, J.L. Corona, M.G. Olvera, S. Sepúlveda-Guzmán, I. Sirés, E. Bustos, Assessment of IrO2-Ta2O5|Ti electrodes for the electrokinetic treatment of hydrocarbon-contaminated soil using different electrode arrays. Electrochim. Acta 208, 282–287 (2016)

    Article  CAS  Google Scholar 

  5. https://frtr.gov/matrix2/section3/sec3_int.html

  6. J.E. Vidonish, K. Zygourakis, C.A. Masiello, G. Sabadell, P.J.J. Alvarez, Thermal treatment of hydrocarbon-impacted soils: a review of technology innovation for sustainable remediation. Engineering 2, 426–437 (2016)

    Article  CAS  Google Scholar 

  7. J.L. Triplett Kingston, P.R. Dahlen, P.C. Johnson, State-of-the-practice review of in-situ thermal technologies. Groundw. Monit. Remediat. 30, 64–72 (2010)

    Article  Google Scholar 

  8. H.F. Stroo, A. Leeson, J.A. Marqusee, P.C. Johnson, H. Ward, M.C. Kavanaugh, T.C. Sale, C.J. Newell, K.D. Pennell, C.A. Lebrón, M. Unger, Chlorinated ethane source remediation: lessons learned. Environ. Sci. Technol. 46, 6438–6447 (2012)

    Article  CAS  Google Scholar 

  9. I. Ross, J. McDonough, J. Miles, P. Storch, P.T. Kochunarayanan, E. Kalve, J. Hurst, S.S. Dasgupta, J. Burdick, A review of emerging technologies for remediation of PFASs. Remediation 28, 101–126 (2018)

    Article  Google Scholar 

  10. S. Kuppusamy, P. Rhavamani, K. Venkateswarlu, Y.B. Lee, R. Naidu, M. Megharaj, Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere 168, 944–968 (2017)

    Article  CAS  Google Scholar 

  11. M. Fingas, An overview of in-situ burning, in Oil Spill Science and Technology, ed. by M. Fingas, (Gulf Professional Publishing, Burlington, USA, 2010), pp. 737–903

    Google Scholar 

  12. U. Roland, F. Holzer, D. Buchenhorst, F.-D. Kopinke, Thermisch unterstützte Bodenreinigung durch direkte Erwärmung mittels Radiowellen - Teil 1: Grundlagen und verfahrenstechnische Aspekte. Chem. Ing. Tech. 79, 1667–1678 (2007)

    Article  CAS  Google Scholar 

  13. U. Roland, D. Buchenhorst, F. Holzer, F.-D. Kopinke, Engineering aspects of radio-wave heating for soil remediation and compatibility with biodegradation. Environ. Sci. Technol. 42, 1232–1237 (2008)

    Article  CAS  Google Scholar 

  14. U. Roland, F. Holzer, F.-D. Kopinke, Combining different frequencies for electrical heating of saturated and unsaturated soil zones. Chem. Eng. Technol. 34, 1645–1651 (2011)

    Article  CAS  Google Scholar 

  15. E.J. Martin, K.G. Mumford, B.H. Kueper, G.A. Siemens, Gas formation in sand and clay during electrical resistance heating. Int. J. Heat Mass Transf. 110, 855–862 (2017)

    Article  CAS  Google Scholar 

  16. http://www.terratherm.com/

  17. A.T. Yeung, Contaminant extractability by electrokinetics. Environ. Eng. Sci. 23, 202–224 (2006)

    Article  CAS  Google Scholar 

  18. S. Barba, R. López-Vizcaíno, C. Saez, J. Villaseñor, P. Cañizares, V. Navarro, M.A. Rodrigo, Electro-bioremediation at the prototype scale: what it should be learned for the scale-up. Chem. Eng. J. 334, 2030–2038 (2018)

    Article  CAS  Google Scholar 

  19. F. Baraud, S. Tellier, M. Astruc, Temperature effect on ionic transport during soil electrokinetic treatment at constant pH. J. Hazard. Mater. B64, 263–281 (1999)

    Article  Google Scholar 

  20. Z. Zhou, X. Liu, K. Sun, C. Lin, J. Ma, M. He, W. Ouyang, Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: a review. Chem. Eng. J. 372, 836–851 (2019)

    Article  CAS  Google Scholar 

  21. Y. Yukselen-Aksoy, K.R. Reddy, Effect of soil composition on electrokinetically enhanced persulfate oxidation of polychlorobiphenyls. Electrochim. Acta 86, 164–169 (2012a)

    Article  CAS  Google Scholar 

  22. D.A. Reynolds, In situ remediation of soils and ground water containing organic contaminants, US patent 9004816 B2 (2015)

    Google Scholar 

  23. Y. Yukselen-Aksoy, K.R. Reddy, Electrokinetic delivery and activation of persulfate for oxidation of PCBs in clayey soils. J. Geotech. Geoenviron. Eng. 139, 175–184 (2012b)

    Article  CAS  Google Scholar 

  24. https://www.thermalrs.com/

  25. M.M. Krol, B.E. Sleep, R.L. Johnson, Impact of low-temperature electrical resistance heating on subsurface flow and transport. Water Resour. Res. 47, W05546 (2011)

    Article  Google Scholar 

  26. H.M. Buettner, W.D. Daily, Cleaning contaminated soil using electrical heating and air stripping. J. Environ. Eng. 121, 580–589 (1995)

    Article  CAS  Google Scholar 

  27. J. Li, L. Wang, L. Peng, Y. Deng, D. Deng, A combo system consisting of simultaneous persulfate recirculation and alternating current electrical resistance heating for the implementation of heat activated persulfate ISCO. Chem. Eng. J. 385, 123803 (2020)

    Article  CAS  Google Scholar 

  28. B.C.W. McGee, C.W. McDonald, L. Little, Comparative proof of concept results for electrothermal dynamic stripping process: integrating environmentalism with bitumen production. SPE Projects, Facilities & Construction (2009)

    Google Scholar 

  29. B.C.W. McGee, Electro-thermal dynamic stripping process for in situ remediation under an occupied apartment building. Remediation 13, 67–79 (2003)

    Article  Google Scholar 

  30. B.C.W. McGee, F.E. Vermeulen, The mechanisms of electrical heating for the recovery of bitumen from oil sands. J. Can. Petrol. Technol. 46, 28–34 (2007)

    Article  CAS  Google Scholar 

  31. T. Navab-Daneshmand, R. Beton, R.J. Hill, D. Frigon, Impact of Joule heating and pH on biosolids electro-dewatering. Environ. Sci. Technol. 49, 5417–5424 (2015)

    Article  CAS  Google Scholar 

  32. X. Wen, M. Jing, H. Cai, Y. Zhang, S. Hu, Y. Teng, G. Liu, L. Lan, H. Lu, Temperature characteristics and influence of water-saturated soil resistivity on the HVDC grounding electrode temperature rise. Electr. Power Energy Syst. 118, 105720 (2020)

    Article  Google Scholar 

  33. H.-J. Diersch, O. Kolditz, Variable-density flow and transport in porous media: approaches and challenges. Adv. Water Resour. 25, 899–944 (2002)

    Article  Google Scholar 

  34. R. Ma, C. Zheng, Effects of density and viscosity in modeling heat as a groundwater tracer. Ground Water 48, 380–389 (2010)

    Article  CAS  Google Scholar 

  35. M.A. Oyanader, P.E. Arce, Role of aspect ratio and Joule heating within the fluid region near a cylindrical electrode in electrokinetic remediation: a numerical solution based on the boundary layer model. Int. J. Chem. Reactor Eng. 11, 687–699 (2013)

    Article  Google Scholar 

  36. C.M. Torres, P.E. Arce, F.J. Justel, L. Romero, Y. Ghorbani, Joule heating effects in electrokinetic remediation: role of non-uniform soil environments: temperature profile behavior and hydrodynamics. Environments 5, 92 (2018)

    Article  Google Scholar 

  37. P.R. Hegele, K.G. Mumford, Gas production and transport during bench-scale electrical resistance heating of water and trichloroethene. J. Contam. Hydrol. 165, 24–36 (2014)

    Article  CAS  Google Scholar 

  38. J.L. Munholland, K.G. Mumford, B.H. Kueper, Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating. J. Contam. Hydrol. 184, 14–24 (2016)

    Article  CAS  Google Scholar 

  39. J.L. Triplett Kingston, P.R. Dahlen, P.C. Johnson, Assessment of groundwater quality improvements and mass discharge reductions at five in situ electrical resistance heating remediation sites. Groundw. Monit. Remediat. 32, 41–51 (2012)

    Article  CAS  Google Scholar 

  40. C.R. Carrigan, J.J. Nitao, Electro-osmotic infusion for Joule heating soil remediation techniques, US patent 5975799 (1999)

    Google Scholar 

  41. D. Oberle, E. Crownover, M. Kluger, In situ remediation of 1,4-dioxane using electrical resistance heating. Remediation 25, 35–42 (2015)

    Article  Google Scholar 

  42. Z. Han, W. Jiao, Y. Tian, J. Hu, D. Han, Lab-scale removal of PAHs in contaminated soil using electrical resistance heating: removal efficiency and alteration of soil properties. Chemosphere 239, 124496 (2020)

    Article  CAS  Google Scholar 

  43. A.I.A. Chowdhury, J.I. Gerhard, D. Reynolds, D.M. O’Carroll, Low permeability zone remediation via oxidant delivered by electrokinetics and activated by electrical resistance heating: proof of concept. Environ. Sci. Technol. 51, 13295–13303 (2017)

    Article  CAS  Google Scholar 

  44. R. Lageman, Electroreclamation: applications in The Netherlands. Environ. Sci. Technol. 27, 2648–2650 (1993)

    Article  CAS  Google Scholar 

  45. E. Vieira dos Santos, F. Souza, C. Saez, P. Cañizares, M.R.V. Lanza, C.A. Martínez-Huitle, M.A. Rodrigo, Application of electrokinetic soil flushing to four herbicides: a comparison. Chemosphere 153, 205–211 (2016)

    Article  CAS  Google Scholar 

  46. C. Risco, S. Rodrigo, R. López Vizcaíno, A. Yustres, C. Saez, P. Cañizares, V. Navarro, M.A. Rodrigo, Removal of oxyfluorfen from spiked soils using electrokinetic soil flushing with linear rows of electrodes. Chem. Eng. J. 294, 65–72 (2016)

    Article  CAS  Google Scholar 

  47. R. López-Vizcaíno, C. Risco, J. Isidro, S. Rodrigo, C. Saez, P. Cañizares, V. Navarro, M.A. Rodrigo, Scale-up of the electrokinetic fence technology for the removal of pesticides. Part II: does size matter for removal of herbicides? Chemosphere 166, 549–555 (2017)

    Article  CAS  Google Scholar 

  48. R. López-Vizcaíno, C. Risco, J. Isidro, S. Rodrigo, C. Saez, P. Cañizares, V. Navarro, M.A. Rodrigo, Scale-up of the electrokinetic fence technology for the removal of pesticides. Part I: Some notes about the transport of inorganic species. Chemosphere 166, 540–548 (2017)

    Article  CAS  Google Scholar 

  49. R. López-Vizcaíno, V. Navarro, M.J. León, C. Risco, M.A. Rodrigo, C. Sáez, P. Cañizares, Scale-up on electrokinetic remediation: engineering and technological parameters. J. Hazard. Mater. 315, 135–143 (2016)

    Article  CAS  Google Scholar 

  50. E.B.S. Da Silva, N.S. Fernandes, E.C.T. de A. Costa, D.R. da Silva, D.M. de Araújo, C.A. Martínez-Huitle, Scale-up of electrokinetic treatment of polluted soil with petroleum: effect of operating conditions. Int. J. Electrochem. Sci. 12, 4001–4015 (2017)

    Article  CAS  Google Scholar 

  51. E.-K. Jeon, J.-M. Jung, W.-S. Kim, S.-H. Ko, K. Baek, In situ electrokinetic remediation of As-, Cu-, and Pb-contaminated paddy soil using hexagonal electrode configuration: a full scale study. Environ. Sci. Pollut. Res. 22, 711–720 (2015)

    Article  CAS  Google Scholar 

  52. https://www.cascade-env.com/

  53. http://www.nocon.eu/Electric-Resistance-Heating/

  54. http://www.thermalrs.com/TRS_docs/EPA%20Skokie%20Cost%20Perform%20Rpt.pdf

  55. http://www.thermalrs.com/TRS_docs/epa542r04010.pdf

  56. M. Kluger, G.L. Beyke, Electrical resistance heating of volatile organic compounds in sedimentary rock. Remediation 20, 69–82 (2010)

    Article  Google Scholar 

  57. M.J. Truex, T.W. Macbeth, V.R. Vermeul, B.G. Fritz, D.P. Mendoza, R.D. Mackley, T.W. Wietsma, G. Sandberg, T. Powell, J. Powers, E. Pitre, M. Michalsen, S.J. Ballock-Dixon, L. Zhong, M. Oostrom, Demonstration of combined zero-valent iron and electrical resistance heating for in situ trichloroethene remediation. Environ. Sci. Technol. 45, 5346–5351 (2011)

    Article  CAS  Google Scholar 

  58. https://www.ready.navy.mil/search.html?q=rits+2006

Download references

Acknowledgments

The authors kindly acknowledge support from project CTQ2016-78616-R (AEI/FEDER, EU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Lanzalaco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lanzalaco, S., Sirés, I. (2021). Electrochemically Assisted Thermal-Based Technologies for Soil Remediation. In: Rodrigo, M.A., Dos Santos, E.V. (eds) Electrochemically Assisted Remediation of Contaminated Soils. Environmental Pollution, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-68140-1_15

Download citation

Publish with us

Policies and ethics