Skip to main content

Persulfate in Remediation of Soil and Groundwater Contaminated by Organic Compounds

  • Chapter
  • First Online:
Electrochemically Assisted Remediation of Contaminated Soils

Part of the book series: Environmental Pollution ((EPOL,volume 30))

Abstract

The use of persulfate for the abatement of a wide variety of organic pollutants in soil and groundwater has proved to be an efficient technology in the last 10 years, mainly for in situ application. Persulfate shows higher stability in soil and groundwater than hydrogen peroxide, has moderate cost and benign by-products. Moreover, it can be applied to a wide range of pH and show less affinity for natural organic matter than does the permanganate ion. Persulfate can be activated in different ways to generate free radicals able to react with organic pollutants at higher rates than the persulfate anion. Heat, iron and base are the main activators used, although dual oxidant systems hydrogen peroxide–persulfate has been also investigated. The radical species formed in persulfate activation can be sulfate, hydroxyl or superoxide, depending mainly on pH and the activator used. These radicals can attack the organic matter in an oxidative mechanism, as sulfate and hydroxyl radicals do, or in a reductive pathway, as does the superoxide radical. Therefore, by choosing the proper activator and conditions, activated persulfate system can be used to eliminate a wide range of organic contaminants. Moreover, the stability of the activators in the subsurface is critical to assess the feasibility for an in situ application and must be taken into account to choose the optimal method for each particular case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.L. Siegrist, M. Crimi, T.J. Simpkin, in In Situ Chemical Oxidation for Groundwater Remediation, ed. by R. U. C. Herb Ward, (Springer, New York, 2011)

    Chapter  Google Scholar 

  2. ITRC, Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater (Interstate Technology and Regulatory Council, Washington, DC, 2005)

    Google Scholar 

  3. R. Baciocchi, L. D’Aprile, I. Innocenti, F. Massetti, I. Verginelli, Development of technical guidelines for the application of in-situ chemical oxidation to groundwater remediation. J. Clean. Prod. 77, 47–55 (2014)

    Article  CAS  Google Scholar 

  4. S.G. Huling, B.E. Pivetz, In-Situ Chemical Oxidation (Environmental Protection Agency, Washington DC Office of Water, 2006)

    Google Scholar 

  5. F.J. Krembs, R.L. Siegrist, M.L. Crimi, R.F. Furrer, B.G. Petri, ISCO for groundwater remediation: analysis of field applications and performance. Ground Water Monit. Remidiat. 30, 42–53 (2010)

    Article  Google Scholar 

  6. R. Baciocchi, Principles, developments and design criteria of in situ chemical oxidation. Water Air Soil Pollut. 224, 1717 (2013)

    Article  CAS  Google Scholar 

  7. J.T.V.S. de Albergaria, H.P.A. Nouws, Soil Remediation: Applications and New Technologies (CRC Press, Boca Raton, 2016)

    Book  Google Scholar 

  8. Brown, R., In situ chemical oxidation: performance, practice, and pitfalls, in AFCEE Technology Transfer Workshop, San Antonio, 2003

    Google Scholar 

  9. D. Zingaretti, I. Verginelli, R. Baciocchi, Catalyzed hydrogen peroxide combined with CO2 sparging for the treatment of contaminated groundwater. Chem. Eng. J. 300, 119–126 (2016)

    Article  CAS  Google Scholar 

  10. D.A. House, Kinetics and mechanism of oxidations by peroxydisulfate. Chem. Rev. 62, 185–203 (1962)

    Article  CAS  Google Scholar 

  11. A. Tsitonaki, B. Petri, M. Crimi, H. Mosbæk, R.L. Siegrist, P.L. Bjerg, In situ chemical oxidation of contaminated soil and groundwater using Persulfate: a review. Crit. Rev. Env. Sci. Technol. 40, 55–91 (2010)

    Article  CAS  Google Scholar 

  12. S. Wacławek, H.V. Lutze, K. Grübel, V.V. Padil, M. Černík, D.D. Dionysiou, Chemistry of persulfates in water and wastewater treatment: a review. Chem. Eng. J. 330, 44–62 (2017)

    Article  CAS  Google Scholar 

  13. L.W. Matzek, K.E. Carter, Activated persulfate for organic chemical degradation: a review. Chemosphere 151, 178–188 (2016)

    Article  CAS  Google Scholar 

  14. I.A. Ike, K.G. Linden, J.D. Orbell, M. Duke, Critical review of the science and sustainability of persulphate advanced oxidation processes. Chem. Eng. J. 338, 651–669 (2018)

    Article  CAS  Google Scholar 

  15. M.A. Dahmani, K. Huang, G.E. Hoag, Sodium persulfate oxidation for the remediation of chlorinated solvents (USEPA Superfund Innovative Technology Evaluation Program). Water Air Soil Pollut. Focus. 6, 127–141 (2006)

    Article  CAS  Google Scholar 

  16. K.C. Huang, Z. Zhao, G.E. Hoag, A. Dahmani, P.A. Block, Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere 61, 551–560 (2005)

    Article  CAS  Google Scholar 

  17. P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data 17, 1027–1284 (1988)

    Article  CAS  Google Scholar 

  18. R.E. Huie, C.L. Clifton, P. Neta, Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions. Int. J. Radiat. Appl. Instrum. Part C. Radiat. Phys. 38, 477–481 (1991)

    CAS  Google Scholar 

  19. J. Ma, Y. Yang, X. Jiang, Z. Xie, X. Li, C. Chen, H. Chen, Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water. Chemosphere 190, 296–306 (2018)

    Article  CAS  Google Scholar 

  20. C. Tan, N. Gao, Y. Deng, N. An, J. Deng, Heat-activated persulfate oxidation of diuron in water. Chem. Eng. J. 203, 294–300 (2012)

    Article  CAS  Google Scholar 

  21. A. Santos, S. Rodríguez, F. Pardo, A. Romero, Use of Fenton reagent combined with humic acids for the removal of PFOA from contaminated water. Sci. Tot. Environ. 563, 657–663 (2016)

    Article  CAS  Google Scholar 

  22. Y. Qian, G. Xue, J. Chen, J. Luo, X. Zhou, P. Gao, Q. Wang, Oxidation of cefalexin by thermally activated persulfate: kinetics, products, and antibacterial activity change. J. Hazard. Mat. 354, 153–160 (2018)

    Article  CAS  Google Scholar 

  23. S. Norzaee, M. Taghavi, B. Djahed, F.K. Mostafapour, Degradation of penicillin G by heat activated persulfate in aqueous solution. J. Eviron. Manage. 215, 316–323 (2018)

    CAS  Google Scholar 

  24. J.L. Wang, S.Z. Wang, Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 334, 1502–1517 (2018)

    Article  CAS  Google Scholar 

  25. Y. Feng, Q. Song, W. Lv, G. Liu, Degradation of ketoprofen by sulfate radical-based advanced oxidation processes: kinetics, mechanisms, and effects of natural water matrices. Chemosphere 189, 643–651 (2017)

    Article  CAS  Google Scholar 

  26. J. Ma, H. Li, L. Chi, H. Chen, C. Chen, Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature. Chemosphere 189, 86–93 (2017)

    Article  CAS  Google Scholar 

  27. M. Ahmad, A.L. Teel, R.J. Watts, Mechanism of persulfate activation by phenols. Environ. Sci. Technol. 47, 5864–5871 (2013)

    Article  CAS  Google Scholar 

  28. K.E. Manz, K.E. Carter, Investigating the effects of heat activated persulfate on the degradation of furfural, a component of hydraulic fracturing fluid chemical additives. Chem. Eng. J. 327, 1021–1032 (2017)

    Article  CAS  Google Scholar 

  29. L. Wang, L. Peng, L. Xie, P. Deng, D. Deng, Compatibility of surfactants. and thermally activated persulfate for enhanced subsurface remediation. Env. Sci. Technol. 51, 7055–7064 (2017)

    Article  CAS  Google Scholar 

  30. S. Padmaja, P. Neta, R.E. Huie, Rate constants for some reactions of inorganic radicals with inorganic-ions - temperature and solvent dependence. Int. J. Chem. Kinet. 25, 447–455 (1993)

    Google Scholar 

  31. C. M. Dominguez, M. A. Lominchar, F. Bertel, A. Romero, A. Santos, Eliminación de HCHs y clorobencenos mediante oxidación química in situ: persulfato activado térmicamente, in XIII Congreso Español de Tratamiento de Aguas (META), Leon, 2018

    Google Scholar 

  32. R.L. Johnson, P.G. Tratnyek, R.O.B. Johnson, Persulfate persistence under thermal activation conditions. Environ. Sci. Technol. 42, 9350–9356 (2008)

    Article  CAS  Google Scholar 

  33. J. Liu, Z. Liu, F. Zhang, X. Su, C. Lyu, Thermally activated persulfate oxidation of NAPL chlorinated organic compounds: effect of soil composition on oxidant demand in different soil-persulfate systems. Water Sci. Technol. 75, 1794–1803 (2017)

    Article  CAS  Google Scholar 

  34. H. Peng, W. Zhang, L. Xu, R. Fu, K. Lin, Oxidation and mechanism of decabromodiphenyl ether (BDE209) by thermally activated persulfate (TAP) in a soil system. Chem. Eng. J. 306, 226–232 (2016)

    Article  CAS  Google Scholar 

  35. L. Peng, D. Deng, M. Guan, X. Fang, Q. Zhu, Remediation HCHs POPs-contaminated soil by activated persulfate technologies: feasibility, impact of activation methods and mechanistic implications. Sep. Purif. Technol. 150, 215–222 (2015)

    Article  CAS  Google Scholar 

  36. L.B. Peng, D.Y. Deng, F.T. Ye, Efficient oxidation of high levels of soil-sorbed phenanthrene by microwave-activated persulfate: implication for in situ subsurface remediation engineering. J. Soils Sediments 16, 28–37 (2016)

    Article  CAS  Google Scholar 

  37. D. Zhao, X. Liao, X. Yan, S.G. Huling, T. Chai, H. Tao, Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. J. Hazard. Mater. 254, 228–235 (2013)

    Article  CAS  Google Scholar 

  38. P.D. Goulden, D.H.J. Anthony, Kinetics of uncatalyzed peroxydisulfate oxidation of organic material in fresh-water. Anal. Chem. 50, 953–958 (1978)

    Article  CAS  Google Scholar 

  39. A. Tsitonaki, Treatment Trains for the Remediation of Aquifers Contaminated with MTBE and Other Xenobiotic Compounds (Department of Environmental Engineering. Technical University of Denmark, Denmark, 2008)

    Google Scholar 

  40. S. Thompson, J. Riggenbach, R.A. Brown, J. Hines, J. Haselow, Catalyzed persulfate remediation of chlorinated and recalcitrant compounds in soil, in Fifth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, www.battelle.org/bookstore. (Battelle Press, Columbus, 2006)

  41. P.A. Block, R.A. Brown, D. Robinson Novel Activation Technologies for Sodium Persulfate In Situ Chemical Oxidation, in Proceedings of the Fourth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds (Battelle Press, Columbus, 2004)

    Google Scholar 

  42. G.V. Buxton, T.N. Malone, G. Arthur Salmon, Reaction of SO4- with Fe2+, Mn2+ and Cu2+ in aqueous solution. J. Chem. Soc. Faraday Trans. 93, 2893–2897 (1997)

    Article  CAS  Google Scholar 

  43. P. Devi, U. Das, A.K. Dalai, In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems. Sci. Total Environ. 571, 643–657 (2016)

    Article  CAS  Google Scholar 

  44. R.M. Félix-Navarro, M. Heredia-Alarcón, S. Pérez-Sicairos, M.I. Salazar-Gastélum, A.F. Diaz, S.W. Lin, Kinetic parameter determination for MTBE degradation with persulfate and Ag+ ions. Rev. Mex. Ing. Quim. 16, 873–882 (2017)

    Google Scholar 

  45. Z. Wei, T. Gao, J. Wang, H. Liu, C. Liu, J. Zhu, M. Chen, Mn(II)-activated persulfate for oxidative degradation of DDT. Fresenius Environ. Bull. 27, 4598–4605 (2018)

    CAS  Google Scholar 

  46. N. Boulos, D. Carvel, J. Muessig, Ex Situ and in Situ Remediation with Activated Persulfate, Google Patents, 2008

    Google Scholar 

  47. A. Romero, A. Santos, F. Vicente, C. González, Diuron abatement using activated persulphate: effect of pH, Fe(II) and oxidant dosage. Chem. Eng. J. 162, 257–265 (2010)

    Article  CAS  Google Scholar 

  48. F. Vicente, A. Santos, A. Romero, S. Rodriguez, Kinetic study of diuron oxidation and mineralization by persulphate: effects of temperature, oxidant concentration and iron dosage method. Chem. Eng. J. 170, 127–135 (2011)

    Article  CAS  Google Scholar 

  49. C. Liang, C.J. Bruell, M.C. Marley, K.L. Sperry, Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple. Chemosphere 55, 1213–1223 (2004)

    Article  CAS  Google Scholar 

  50. C. Liang, C.F. Huang, Y.J. Chen, Potential for activated persulfate degradation of BTEX contamination. Water Res. 42, 4091–4100 (2008)

    Article  CAS  Google Scholar 

  51. S. Rodriguez, A. Santos, A. Romero, F. Vicente, Kinetic of oxidation and mineralization of priority and emerging pollutants by activated persulfate. Chem. Eng. J. 213, 225–234 (2012)

    Article  CAS  Google Scholar 

  52. C.J. Liang, M.C. Lai, Trichloroethylene degradation by zero valent iron activated persulfate oxidation. Environ. Eng. Sci. 25, 1071–1077 (2008)

    Article  CAS  Google Scholar 

  53. S. Rodriguez, A. Santos, A. Romero, Oxidation of priority and emerging pollutants with persulfate activated by iron: effect of iron valence and particle size. Chem. Eng. J. 318, 197–205 (2017)

    Article  CAS  Google Scholar 

  54. F. Pardo, J.M. Rosas, A. Santos, A. Romero, Remediation of a biodiesel blend-contaminated soil with activated persulfate by different sources of iron. Water Air Soil Pollut. 226, 1–12 (2015)

    Google Scholar 

  55. F. Pardo, A. Santos, A. Romero, Fate of iron and polycyclic aromatic hydrocarbons during the remediation of a contaminated soil using iron-activated persulfate: a column study. Sci. Tot. Environ. 566, 480–488 (2016)

    Article  CAS  Google Scholar 

  56. M. Peluffo, F. Pardo, A. Santos, A. Romero, Use of different kinds of persulfate activation with iron for the remediation of a PAH-contaminated soil. Sci. Total Environ. 563, 649–656 (2016)

    Article  CAS  Google Scholar 

  57. M.A. Al-Shamsi, N.R. Thomson, Treatment of organic compounds by activated persulfate using nanoscale zerovalent iron. Ind. Eng. Chem. Res. 52, 13564–13571 (2013)

    Article  CAS  Google Scholar 

  58. D. Han, J. Wan, Y. Ma, Y. Wang, Y. Li, D. Li, Z. Guan, New insights into the role of organic chelating agents in Fe(II) activated persulfate processes. Chem. Eng. J. 269, 425–433 (2015)

    Article  CAS  Google Scholar 

  59. C. Liang, C.J. Bruell, M.C. Marley, K.L. Sperry, Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere 55, 1225–1233 (2004)

    Article  CAS  Google Scholar 

  60. P.F. Killian, C.J. Bruell, C. Liang, M.C. Marley, Iron (II) activated persulfate oxidation of MGP contaminated soil. Soil Sediment Contam. 16, 523–537 (2007)

    Article  CAS  Google Scholar 

  61. A. Rastogi, S.R. Al-Abed, D.D. Dionysiou, Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols. Water Res. 43, 684–694 (2009)

    Article  CAS  Google Scholar 

  62. J. Anotai, W.S. Bunmahotama, M.-C.J.E.E. Lu, Oxidation of aniline with sulfate radicals in the presence of citric acid. Environ. Eng. Sci. 28, 207–215 (2011)

    Google Scholar 

  63. G.E. Hoag, J. Collins, Soil remediation method and composition, Google Patents (2011)

    Google Scholar 

  64. F. Vicente, A. Santos, E.G. Sagüillo, Á.M. Martínez-Villacorta, J.M. Rosas, A. Romero, Diuron abatement in contaminated soil using Fenton-like process. Chem. Eng. J. 183, 357–364 (2012)

    Article  CAS  Google Scholar 

  65. D.Y.S. Yan, I.M.C. Lo, Removal effectiveness and mechanisms of naphthalene and heavy metals from artificially contaminated soil by iron chelate-activated persulfate. Environ. Pollut. 178, 15–22 (2013)

    Article  CAS  Google Scholar 

  66. K.S. Sra, N.R. Thomson, J.F. Barker, Stability of activated Persulfate in the presence of aquifer solids. Soil Sediment Contam. 23, 820–837 (2014)

    Article  CAS  Google Scholar 

  67. Y. Lei, H. Zhang, J. Wang, J. Ai, Rapid and continuous oxidation of organic contaminants with ascorbic acid and a modified ferric/persulfate system. Chem. Eng. J. 270, 73–79 (2015)

    Article  CAS  Google Scholar 

  68. F. Pardo, J.M. Rosas, A. Santos, A. Romero, Remediation of soil contaminated by NAPLs using modified Fenton reagent: application to gasoline type compounds. J. Chem. Technol. Biotechnol. 90, 754–764 (2015)

    Article  CAS  Google Scholar 

  69. M. Danish, X. Gu, S. Lu, X. Zhang, X. Fu, Y. Xue, A.S. Qureshi, The effect of chelating agents on enhancement of 1,1,1-trichloroethane and trichloroethylene degradation by Z-nZVI-catalyzed percarbonate process. Water Air Soil Pollut 227, 301 (2016)

    Article  CAS  Google Scholar 

  70. X. Fu, M.L. Brusseau, X. Zang, S. Lu, X. Zhang, U. Farooq, Q. Sui, Enhanced effect of HAH on citric acid-chelated Fe(II)-catalyzed percarbonate for trichloroethene degradation. Environ. Sci. Pollut. Res. 24, 24318–24326 (2017)

    Article  CAS  Google Scholar 

  71. H. Peng, L. Xu, W. Zhang, L. Liu, F. Liu, K. Lin, Q. Lu, Enhanced degradation of BDE209 in spiked soil by ferrous-activated persulfate process with chelating agents. Environ. Sci. Pollut. Res. 24, 2442–2448 (2017)

    Article  CAS  Google Scholar 

  72. S. Yu, X. Gu, S. Lu, Y. Xue, X. Zhang, M. Xu, Z. Qui, Q. Sui, Degradation of phenanthrene in aqueous solution by a persulfate/percarbonate system activated with CA chelated-Fe(II). Chem. Eng. J. 333, 122–131 (2018)

    Article  CAS  Google Scholar 

  73. Y. Wu, R. Prulho, M. Brigante, W. Dong, K. Hanna, G. Mailhot, Activation of persulfate by Fe (III) species: Implications for 4-tert-butylphenol degradation. J. Hazard. Mater 322, 380–386 (2017)

    Article  CAS  Google Scholar 

  74. H. Liu, T.A. Bruton, W. Li, J.V. Buren, C. Prasse, F.M. Doyle, D. Sedlak, L oxidation of benzene by persulfate in the presence of Fe (III)-and Mn (IV)-containing oxides: stoichiometric efficiency and transformation products. J. Environ. Sci. 50, 890–898 (2016)

    Article  CAS  Google Scholar 

  75. K. Manoli, G. Nakhla, A.K. Ray, V.K. Sharma, Enhanced oxidative transformation of organic contaminants by activation of ferrate (VI): possible involvement of FeV/FeIV species. Chem. Eng. J. 307, 513–517 (2017)

    Article  CAS  Google Scholar 

  76. V.K. Sharma, R. Zboril, R.S. Varma, Ferrates: greener oxidants with multimodal action in water treatment technologies. Acc. Chem. Res. 42, 182–191 (2015)

    Article  CAS  Google Scholar 

  77. S. Rodriguez, L. Vasquez, D. Costa, A. Romero, A. Santos, Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI). Chemosphere 101, 86–92 (2014)

    Article  CAS  Google Scholar 

  78. R. Chen, J. Pignatello, Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. J. Environ. Sci. Technol. 31, 2399–2406 (1997)

    Article  CAS  Google Scholar 

  79. Y. Jin, S.P. Sun, X. Yang, X.D. Chen, Degradation of ibuprofen in water by Fe-II-NTA complex-activated persulfate with hydroxylamine at neutral pH. Chem. Eng. J. 337, 152–160 (2018)

    Article  CAS  Google Scholar 

  80. X. Wu, X. Gu, S. Lu, Z. Qiu, Q. Sui, X. Zang, M. Danish, Accelerated degradation of tetrachloroethylene by Fe (II) activated persulfate process with hydroxylamine for enhancing Fe (II) regeneration. J. Chem. Technol. Biotechnol. 91, 1280–1289 (2016)

    Article  CAS  Google Scholar 

  81. D. Han, J. Wan, Y. Ma, Y. Wang, M. Huang, Y. Chen, D. Li, Z. Guan, Y. Li, Enhanced decolorization of Orange G in a Fe(II)-EDDS activated persulfate process by accelerating the regeneration of ferrous iron with hydroxylamine. Chem. Eng. J. 256, 316–323 (2014)

    Article  CAS  Google Scholar 

  82. S. Rodriguez, L. Vasquez, A. Romero, A. Santos, Dye oxidation in aqueous phase by using zero-valent iron as persulfate activator: kinetic model and effect of particle size. Ind. Eng. Chem. Res. 53, 12288–12294 (2014)

    Article  CAS  Google Scholar 

  83. J. Bolobajev, N.B. Öncü, M. Viisimaa, M. Trapido, I. Balcıoğlu, A. Goi, Column experiment on activation aids and biosurfactant application to the persulphate treatment of chlorophene-contaminated soil. Environ. Technol. 36, 348–357 (2015)

    Article  CAS  Google Scholar 

  84. F. Jousse, O. Atteia, P. Höhener, G. Cohen, Removal of NAPL from columns by oxidation, sparging, surfactant and thermal treatment. Chemosphere 188, 182–189 (2017)

    Article  CAS  Google Scholar 

  85. V. Rybnikova, N. Singhal, K. Hanna, Remediation of an aged PCP-contaminated soil by chemical oxidation under flow-through conditions. Chem. Eng. J. 314, 202–211 (2017)

    Article  CAS  Google Scholar 

  86. M. Usman, O. Tascone, V. Rybnikova, P. Faure, K. Hanna, Application of chemical oxidation to remediate HCH-contaminated soil under batch and flow through conditions. Environ. Sci. Pollut. Res. 24, 14748–14757 (2017)

    Article  CAS  Google Scholar 

  87. O.S. Furman, A.L. Teel, M. Ahmad, M.C. Merker, R.J. Watts, Effect of basicity on persulfate reactivity. J. Environ. Eng. 137, 241–247 (2011)

    Article  CAS  Google Scholar 

  88. O.S. Furman, A.L. Teel, R.J. Watts, Mechanism of base activation of persulfate. Environ. Sci. Technol. 44, 6423–6428 (2010)

    Article  CAS  Google Scholar 

  89. C.J. Liang, J.H. Lei, Identification of active radical species in alkaline persulfate oxidation. Water Environ. Res. 87, 656–659 (2015)

    Article  CAS  Google Scholar 

  90. B.A. Smith, A.L. Teel, R.J. Watts, Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton’s systems. Environ. Sci. Technol. 38, 5465–5469 (2004)

    Article  CAS  Google Scholar 

  91. A.L. Teel, R.J. Watts, Degradation of carbon tetrachloride by modified Fenton’s reagent. J. Hazard. Mater 94, 179–189 (2002)

    Article  CAS  Google Scholar 

  92. R.J. Watts, J. Howsawkeng, A.L. Teel, Destruction of a carbon tetrachloride dense nonaqueous phase liquid by modified Fenton’s reagent. J. Environ. Eng. 131, 1114–1119 (2005)

    Article  CAS  Google Scholar 

  93. M. Hayyan, M.A. Hashim, I.M. AlNashef, Superoxide ion: generation and chemical implications. Chem. Rev. 116, 3029–3085 (2016)

    Article  CAS  Google Scholar 

  94. M.A. Lominchar, D. Lorenzo, A. Romero, A. Santos, Remediation of soil contaminated by PAHs and TPH using alkaline activated persulfate enhanced by surfactant addition at flow conditions. J. Chem. Technol. Biotechnol. 93, 1270–1278 (2018)

    Article  CAS  Google Scholar 

  95. M.A. Lominchar, S. Rodríguez, D. Lorenzo, N. Santos, A. Romero, A. Santos, Phenol abatement using persulfate activated by nZVI, H2O2 and NaOH and development of a kinetic model for alkaline activation. Environ. Technol. 39, 35–43 (2018)

    Article  CAS  Google Scholar 

  96. M.A. Lominchar, A. Santos, E. de Miguel, A. Romero, Remediation of aged diesel contaminated soil by alkaline activated persulfate. Sci. Total Environ. 662, 41–48 (2018)

    Article  CAS  Google Scholar 

  97. S.Y. Oh, D.S. Shin, Remediation of explosive-contaminated soils: alkaline hydrolysis and subcritical water degradation. Soil Sediment Contam. 24, 157–171 (2015)

    Article  CAS  Google Scholar 

  98. A. Santos, J. Fernandez, S. Rodriguez, C.M. Dominguez, M.A. Lominchar, D. Lorenzo, A. Romero, Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate. Sci. Tot. Environ. 615, 1070–1077 (2018)

    Article  CAS  Google Scholar 

  99. C.J. Liang, Y.Y. Guo, Remediation of diesel-contaminated soils using persulfate under alkaline condition. Water Air Soil Pollut. 223, 4605–4614 (2012)

    Article  CAS  Google Scholar 

  100. S. Waisner, V.F. Medina, A.B. Morrow, C.C. Nestler, Evaluation of chemical treatments for a mixed contaminant soil. J. Environ. Eng. ASCE 134, 743–749 (2008)

    Article  CAS  Google Scholar 

  101. M. Crimi, A comparison of methods to activate sodium persulfate for lindane destruction, Final project report prepared for FMC Corporation, Colorado School of Mines (2005)

    Google Scholar 

  102. Z. Liu, W. Guo, X. Han, X. Li, K. Zhang, Z. Qiao, In situ remediation of ortho-nitrochlorobenzene in soil by dual oxidants (hydrogen peroxide/persulfate). Environ. Sci. Pollut. Res. 23, 19707–19712 (2016)

    Article  CAS  Google Scholar 

  103. A.L. Teel, D.D. Finn, J.T. Schmidt, L.M. Cutler, R.J. Watts, Rates of trace mineral-catalysed decomposition of hydrogen peroxide. J. Environ. Eng. ASCE 133, 853–858 (2007)

    Article  CAS  Google Scholar 

  104. E. Ferrarese, G. Andreottola, I.A. Oprea, Remediation of PAH-contaminated sediments by chemical oxidation. J. Hazard. Mater. 152, 128–139 (2008)

    Article  CAS  Google Scholar 

  105. S. Ko, M. Crimi, B.K. Marvin, V. Holmes, S.G. Huling, Comparative study on oxidative treatments of NAPL containing chlorinated ethanes and ethenes using hydrogen peroxide and persulfate in soils. J. Environ. Manag. 108, 42–48 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Comunidad Autonoma of Madrid (Project S2013-MAE-2739 CARESOIL-CM) and from the Spanish MINECO (Project CTM2016-77151-C2-1-R). Carmen M. Dominguez acknowledges the Spanish MINECO for the “Juan de la Cierva” postdoctoral contract (FJCI-2016-28462).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santos, A., Lorenzo, D., Dominguez, C.M. (2021). Persulfate in Remediation of Soil and Groundwater Contaminated by Organic Compounds. In: Rodrigo, M.A., Dos Santos, E.V. (eds) Electrochemically Assisted Remediation of Contaminated Soils. Environmental Pollution, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-68140-1_10

Download citation

Publish with us

Policies and ethics