Skip to main content

Deidentifying MRI Data Domain by Iterative Backpropagation

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges (STACOM 2020)

Abstract

Medical images acquired at various hospitals can differ significantly in their data distribution. We can find multiple sources of divergence evaluating images from different clinical centers, patient diseases, vendors, or even configurations on the same scanner. Typically at deployment, when we are facing real-world domain, data is collected from it and the trained model is adapted. This is not practical in all scenarios like medical imaging due to the lack of data and the strict protection to which it is subjected. We investigate this challenging problem by evaluating a novel domain adaptation procedure. First, a classifier model is trained to distinguish between which data distribution comes from. Once trained, the images from each vendor are modified iteratively using the gradients of the error obtained when the target is set arbitrarily. Finally, when we have a new sample we only have to carry out the same process of domain adaptation by error backpropagation. The experiments were performed on Multi-Centre, Multi-Vendor & Multi-Disease Cardiac Image Segmentation Challenge (M&Ms), comparing the segmentation metrics obtained for studies from vendors present in the training set and an additional studies from an unseen vendor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://albumentations.readthedocs.io/.

References

  1. Campello, V.M., et al.: Multi-centre, multi-vendor & multi-disease cardiac image segmentation. in preparation (2020)

    Google Scholar 

  2. Dar, S.U., Yurt, M., Karacan, L., Erdem, A., Erdem, E., Çukur, T.: Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE Trans. Med. Imaging 38(10), 2375–2388 (2019)

    Article  Google Scholar 

  3. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout (2017). http://arxiv.org/abs/1708.04552

  4. Fan, C., Liu, P., Xiao, T., Zhao, W., Tang, X.: Domain adaptation based on domain-invariant and class-distinguishable feature learning using multiple adversarial networks. Neurocomputing 411, 178–192 (2020). https://doi.org/10.1016/j.neucom.2020.06.044, http://www.sciencedirect.com/science/article/pii/S0925231220310158

  5. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2030 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Gretton, A., Sejdinovic, D., Strathmann, H., Balakrishnan, S., Pontil, M., Fukumizu, K., Sriperumbudur, B.K.: Optimal kernel choice for large-scale two-sample tests. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1205–1213. Curran Associates, Inc. (2012). http://papers.nips.cc/paper/4727-optimal-kernel-choice-for-large-scale-two-sample-tests.pdf

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2015)

    Google Scholar 

  8. Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., Wilson, A.: Averaging weights leads to wider optima and better generalization (2018)

    Google Scholar 

  9. Jäger, F., Deuerling-Zheng, Y., Frericks, B., Wacker, F., Hornegger, J.: A new method for MRI intensity standardization with application to lesion detection in the brain. Vision Modeling and Visualization, January 2006

    Google Scholar 

  10. Midya, A., Chakraborty, J., Gönen, M., Do, R., Simpson, A.: Influence of CT acquisition and reconstruction parameters on radiomic feature reproducibility. J. Med. Imaging 5, 1 (2018). https://doi.org/10.1117/1.JMI.5.1.011020

    Article  Google Scholar 

  11. Modanwal, G., Vellal, A., Buda, M., Mazurowski, M.: MRI image harmonization using cycle-consistent generative adversarial network, p. 36, March 2020. https://doi.org/10.1117/12.2551301

  12. Nyul, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19(2), 143–150 (2000)

    Article  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Roy, A.G., Navab, N., Wachinger, C.: Recalibrating fully convolutional networks with spatial and channel "squeeze and excitation" blocks. IEEE Trans. Med. Imaging 38(2), 540–549 (2019). https://doi.org/10.1109/TMI.2018.2867261

  15. Saha, A., Yu, X., Sahoo, D., Mazurowski, M.A.: Effects of MRI scanner parameters on breast cancer radiomics. Expert Syst. Appl. 87, 384–391 (2017). https://doi.org/10.1016/j.eswa.2017.06.029, http://www.sciencedirect.com/science/article/pii/S0957417417304463

  16. Shorten, C., Khoshgoftaar, T.M.: A survey on Image Data Augmentation for Deep Learning. J. Big Data 6(1), 60 (2019). https://doi.org/10.1186/s40537-019-0197-0, https://doi.org/10.1186/s40537-019-0197-0

  17. Simkó, A., Löfstedt, T., Garpebring, A., Nyholm, T., Jonsson, J.: A generalized network for MRI intensity normalization. In: International Conference on Medical Imaging with Deep Learning - Extended Abstract Track, London, United Kingdom (2019). https://openreview.net/forum?id=HyeL2iQRYE

  18. Welander, P., Karlsson, S., Eklund, A.: Generative adversarial networks for image-to-image translation on multi-contrast MR images - a comparison of cyclegan and unit. ArXiv abs/1806.07777 (2018)

    Google Scholar 

  19. Xiao, Y., Decencière, E., Velasco-Forero, S., Burdin, H., Bornschlögl, T., Bernerd, F., Warrick, E., Baldeweck, T.: A new color augmentation method for deep learning segmentation of histological images. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 886–890 (2019)

    Google Scholar 

  20. Zhang, H., Cisse, M., Dauphin, Y., Lopez-Paz, D.: mixup: beyond Empirical Risk Minimization (2017)

    Google Scholar 

  21. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

Download references

Acknowledgement

The authors of this paper declare that the segmentation method they implemented for participation in the M&Ms challenge has not used any pre-trained models nor additional MRI datasets other than those provided by the organizers. The authors thank the EU-FEDER Comunitat Valenciana 2014-2020 grant IDIFEDER/2018/025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Parreño .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parreño, M., Paredes, R., Albiol, A. (2021). Deidentifying MRI Data Domain by Iterative Backpropagation. In: Puyol Anton, E., et al. Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC Challenges. STACOM 2020. Lecture Notes in Computer Science(), vol 12592. Springer, Cham. https://doi.org/10.1007/978-3-030-68107-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68107-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68106-7

  • Online ISBN: 978-3-030-68107-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics