Skip to main content

Abstract

Current federal research misconduct regulations put universities in charge of investigating allegations made against their own faculty. The central thesis of this book is that conflict of interest prevents universities from properly carrying out their charge to investigate falsification of research. Universities, and specifically faculty committees, are poorly equipped to prove intentional or reckless behavior on the part of faculty respondents. Yet, failure to meet all the conditions of research misconduct leads to exoneration, even of those who have falsified data. A corollary is that the confidentiality clause in federal regulations has been distorted so that it is used to protect universities, not the informant or respondent to allegations as originally intended. The conflicts are illustrated by a specific example, in which two scientists managed to evade judgment for nine years by using legal pressure and other influence. The federal regulations were written with the assumption that science would be a significant guiding principle in the investigative process. In practice, scientific considerations are less important than the funding status, connections and litigiousness of respondents. These failures of the regulation can lead to serious harm to the reputation and professional standing of the informant.

Science is a search for the truth, that is the effort to understand the world: it involves the rejection of bias, of dogma, of revelation, but not the rejection of morality.

–Linus Pauling

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lancaster, C. 2015. The Acid Test for Biological Science: STAP Cells, Trust, and Replication. Science and Engineering Ethics 22: 147–167.

    Article  Google Scholar 

  2. Hawkes, N. 2014. Investigation into Stem Cell Research Claims Finds Scientific Misconduct by Researcher and Lack of Supervision by Coauthors. British Medical Journal 348: g2563.

    Article  Google Scholar 

  3. Normile, D. 2014. Stem Cell Research RIKEN Panel Finds Misconduct in Controversial Paper. Science 344: 23–23.

    Article  Google Scholar 

  4. Carpenter, S. 2012. Harvard Psychology Researcher Committed Fraud, U.S. Investigation Concludes. ScienceInsider, September 6.

    Google Scholar 

  5. Judson, H.F. 2004. The Great Betrayal: Fraud in Science. Orlando: Harcourt Press.

    Google Scholar 

  6. Broad, W., and N. Wade. 1983. Betrayers of the Truth: Fraud and Deceit in the Halls of Science. London: Century Publishing.

    Google Scholar 

  7. Reich, E. 2009. Plastic Fantastic. New York: Palgrave Macmillan.

    Google Scholar 

  8. Reich, E.S. 2007. Disputed Inquiry Clears Bubble-Fusion Engineer. Nature 445: 690–691.

    Article  Google Scholar 

  9. Chung, S., et al. 2013. The Formation of Pd Nanocrystals from Pd2(dba)3 Microcrystals. Particle & Particle Systems Characterization 30: 280–286.

    Article  Google Scholar 

  10. Franzen, S., M. Cerruti, D.N. Leonard, and G. Duscher. 2007. The Role of Selection Pressure in RNA-Mediated Evolutionary Materials Synthesis. Journal of the American Chemical Society 129: 15340–15346.

    Article  Google Scholar 

  11. Franzen, S., and D.N. Leonard. 2011. Analysis of RNA-Mediated Materials Synthesis Using Magnetic Selection. Journal of Physical Chemistry C 115: 9335–9343.

    Article  Google Scholar 

  12. Leonard, D.N., M. Cerruti, G. Duscher, and S. Franzen. 2008. Interfacial and Solvent Effects Govern the Formation of tris(dibenzylidenacetone)dipalladium(0) Microstructures. Langmuir 24: 7803–7809.

    Article  Google Scholar 

  13. Leonard, D.N., G. Duscher, and S. Franzen. 2008. Eletter Concerning “RNA-Mediated Metal-Metal Bond Formation in the Synthesis of Hexagonal Palladium Nanoparticles”. Science e-Letter.

    Google Scholar 

  14. Leonard, D.N., and S. Franzen. 2009. Is Pd-2(DBA)(3) a Feasible Precursor for the Synthesis of Pd Nanoparticles? Journal of Physical Chemistry C 113: 12706–12714.

    Article  Google Scholar 

  15. Gugliotti, L.A., D.L. Feldheim, and B.E. Eaton. 2004. RNA-Mediated Metal-Metal Bond Formation in the Synthesis of Hexagonal Palladium Nanoparticles. Science 304: 850–852.

    Article  Google Scholar 

  16. Neff, J. 2014. In notebook at NCSU, a ‘smoking gun’. News and Observer, January 20.

    Google Scholar 

  17. Eaton, B., D. Feldheim, M. Dolska, and L. Gugliotti. 2003. Novel Methods of Inorganic Compound Discovery and Synthesis U.S. Patent Application US 20050136439 A1.

    Google Scholar 

  18. Neff, J. 2014. NC State Professor Uncovers Problems in Lab Journal. New and Observer, January 19.

    Google Scholar 

  19. ———. 2014. Congressmen Push NCSU on Case of Flawed Research. Raleigh News and Observer, July 17.

    Google Scholar 

  20. ———. 2016. Formesr NCSU Scientists Reprimanded, Lose Future Funding over ‘Misleading’ Research. News and Observer, January 8.

    Google Scholar 

  21. Kuta, S. 2016. National Science Foundation Reprimands CU-Boulder Prof over Research Practices. Daily Camera, November 1.

    Google Scholar 

  22. Borman, S. 2016. Nanoparticle Synthesis Paper Retracted After 12 Years. Chemical & Engineering News 94: 37–38.

    Google Scholar 

  23. Mervis, J. 2016. NSF Breaks New Ground in Reprimanding Authors of Flawed Science Paper. ScienceInsider, February 4.

    Google Scholar 

  24. Kuta, S. 2014. CU-Boulder Scientists Speak Out on Research Misconduct Claim. Boulder Daily Camera, February 7.

    Google Scholar 

  25. Franzen, S., and Leonard, D.N.A. 2010. Critical Assessment of RNA-Mediated Materials Synthesis. Material Research Society Symposium Proceedings 1271: 1272-PP1204-1203.

    Google Scholar 

  26. Franzen, S. 2011. Determination of the Solubility Limit of Tris(dibenzylideneacetone) dipalladium(0) in Tetrahydrofuran/Water Mixtures. Journal of Chemical Education 88: 619–623.

    Article  Google Scholar 

  27. Reich, E.S. 2011. Acrimony over Nanoconstruction. Nature, August 23.

    Google Scholar 

  28. N.S. Foundation. 2015. https://www.nsf.gov/oig/case-closeout/A06110054.pdf. A06110054.

  29. Gugliotti, L.A. 2006. North Carolina State University.

    Google Scholar 

  30. Gugliotti, L.A., D.L. Feldheim, and B.E. Eaton. 2005. RNA-Mediated Control of Metal Nanoparticle Shape. Journal of American Chemical Society 127: 17814–17818.

    Article  Google Scholar 

  31. Liu, D.G., et al. 2006. RNA-Mediated Synthesis of Palladium Nanoparticles on Au Surfaces. Langmuir 22: 5862–5866.

    Article  Google Scholar 

  32. Franzen, S. 2013. Comment on ‘Cooperativity Between Two Selected RNA Pdases in the Synthesis of Pd Nanoparticles’ by J. L. Rouge et al. Journal of Materials Chemistry 2010, 20: 8394–8398. Journal of Materials Chemistry B 1: 6339–6341.

    Google Scholar 

  33. Tuerk, C., and L. Gold. 1990. Systematic Evolution of Ligands by Exponential Enrichment – RNA Ligands to Bacteriophage-T4 DNA-Polymerase. Science 249: 505–510.

    Google Scholar 

  34. Ellington, A.D., and J.W. Szostak. 1990. In vitro Selection of RNA Molecules that Bind Specific Ligands. Nature 346: 818–822.

    Article  Google Scholar 

  35. Gold, L. 2004. Photoaptamer-Based High-Density Proteomic Arrays. Molecular & Cellular Proteomics 3: S2–S2.

    Google Scholar 

  36. Gold, L., et al. 2010. Aptamer-Based Multiplexed Proteomic Technology for Biomarker Discovery. Plos One 5.

    Google Scholar 

  37. ———. 2010. Aptamers and the RNA World, Past and Present. Cold Spring Harbor Perspectives in Biology. https://doi.org/10.1101/cshperspect.a003582.

  38. Golden, M.C., B.D. Collins, M.C. Willis, and T.H. Koch. 2000. Diagnostic Potential of PhotoSELEX-Evolved ssDNA Aptamers. Journal of Biotechnology 81: 167–178.

    Article  Google Scholar 

  39. Agresti, J.J., B.T. Kelly, A. Jaschke, and A.D. Griffiths. 2005. Selection of Ribozymes that Catalyse Multiple-Turnover Diels-Alder Cycloadditions by Using in vitro Compartmentalization. Proceedings of the National Academy of Sciences of the United States America 102: 16170–16175.

    Article  Google Scholar 

  40. Furtig, B., et al. 2007. Time-Resolved NMR Studies of RNA Folding. Biopolymers 86: 360–383.

    Article  Google Scholar 

  41. Keiper, S., D. Bebenroth, B. Seelig, E. Westhof, and A. Jaschke. 2004. Architecture of a Diels-Alderase Ribozyme with a Preformed Catalytic Pocket. Chemical Biology 11: 1217–1227.

    Article  Google Scholar 

  42. Kisseleva, N., S. Kraut, A. Jaschke, and O. Schiemann. 2007. Characterizing Multiple Metal Ion Binding Sites Within a Ribozyme by Cadmium-Induced EPR Silencing. Hfsp Journal 1: 127–136.

    Article  Google Scholar 

  43. Manoharan, V., B. Furtig, A. Jaschke, and H. Schwalbe. 2009. Metal-Induced Folding of Diels-Alderase Ribozymes Studied by Static and Time-Resolved NMR Spectroscopy. Journal of American Chemical Society 131: 6261–6270.

    Article  Google Scholar 

  44. Jia, T.Z., A.C. Fahrenbach, N.P. Kamat, K.P. Adamala, and J.W. Szostak. 2016. Oligoarginine Peptides Slow Strand Annealing and Assist Non-enzymatic RNA Replication. Nature Chemistry 8: 915–921.

    Article  Google Scholar 

  45. ———. 2017. Oligoarginine Peptides Slow Strand Annealing and Assist Non-enzymatic RNA Replication (Retraction of Vol 8, Pg 915, 2016). Nature Chemistry 9: 1286–1286.

    Article  Google Scholar 

  46. Rybarczyk, A., et al. 2015. New in Silico Approach to Assessing RNA Secondary Structures with Non-canonical Base Pairs. BMC Bioinformatics 16: 276.

    Article  Google Scholar 

  47. Cech, T.R. 2012. The RNA Worlds in Context. Cold Spring Harbor Perspectives in Biology 4.

    Google Scholar 

  48. Kruger, K., et al. 1982. Self-Splicing RNA – Auto-Excision and Auto-Cyclization of the Ribosomal-RNA Intervening Sequence of Tetrahymena. Cell 31: 147–157.

    Google Scholar 

  49. Joyce, G.F. 1989. Amplification, Mutation and Selection of Catalytic RNA. Gene 82: 83–87.

    Article  Google Scholar 

  50. Cech, T.R. 2013. How a Chemist Looks at RNA. Angewandte Chemie-International Edition 52: 75–78.

    Article  Google Scholar 

  51. Chung, S.W., et al. 2008. Scanning Probe-Based Fabrication of 3D Nanostructures via Affinity Templates, Functional RNA, and Meniscus-Mediated Surface Remodeling. Scanning 30: 159–171.

    Article  Google Scholar 

  52. Jolly, J. 2017. Why I Failed to Catch Canada’s Worst Serial Killer. BBC World Service, June 1.

    Google Scholar 

  53. Adamiak, R.W., and P. Gornicki. 1985. Hypermodified Nucleosides of Transfer-RNA – Synthesis, Chemistry and Structural Features of Biological Interest. Progress in Nucleic Acid Research and Molecular Biology 32: 27–74.

    Google Scholar 

  54. Antczak, M., et al. 2016. New functionality of RNAComposer: An Application to Shape the Axis of miR160 Precursor Structure. Acta Biochimica Polonica 63: 737–744.

    Google Scholar 

  55. Biesiada, M., K. Pachulska-Wieczorek, R.W. Adamiak, and K.J. Purzycka. 2016. RNAComposer and RNA 3D Structure Prediction for Nanotechnology. Methods 103: 120–127.

    Article  Google Scholar 

  56. Cieslak, M., J. Szymanski, R.W. Adamiak, and C.S. Cierniewski. 2003. Structural Rearrangements of the 10-23 DNAzyme to Beta 3 Integrin Subunit mRNA Induced by Cations and Their Relations to the Catalytic Activity. Journal of Biological Chemistry 278: 47987–47996.

    Article  Google Scholar 

  57. Heydenreich, A., et al. 1993. The Complex Between Ribonuclease T1 and 3′GMP Suggests Geometry of Enzymatic Reaction Path – An X-ray Study. European Journal of Biochemistry 218: 1005–1012.

    Google Scholar 

  58. Lukasiak, P., et al. 2015. RNAssess-a Web Server for Quality Assessment of RNA 3D Structures. Nucleic Acids Research 43: W502–W506.

    Article  Google Scholar 

  59. Olejniczak, M., et al. 2002. The bulge region of HIV-1 TAR RNA Binds Metal Ions in Solution. Nucleic Acids Research 30: 4241–4249.

    Article  Google Scholar 

  60. Pachulska-Wieczorek, K., L. Blaszczyk, M. Biesiada, R.W. Adamiak, and K.J. Purzycka. 2016. The Matrix Domain Contributes to the Nucleic Acid Chaperone Activity of HIV-2 Gag. Retrovirology 13: 18.

    Article  Google Scholar 

  61. Popenda, M., et al. 2012. Automated 3D Structure Composition for Large RNAs. Nucleic Acids Research 40: e112.

    Article  Google Scholar 

  62. Purzycka, K.J., et al. 2015. Automated 3D RNA Structure Prediction Using the RNAComposer Method for Riboswitches. In Computational Methods for Understanding Riboswitches, ed. S.J. Chen and D.H. Burke Aguero, vol. 553, 3–34. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  63. Popenda, M., J. Milecki, and R.W. Adamiak. 2004. High Salt Solution Structure of a Left-Handed RNA Double Helix. Nucleic Acids Research 32: 4044–4054.

    Article  Google Scholar 

  64. Gugliotti, L.A., D.L. Feldheim, and B.E. Eaton. 2009. RNA-Mediated Control of Metal Nanoparticle Shape (vol 127, pg 17814, 2005). Journal of the American Chemical Society 131: 11634–11634.

    Article  Google Scholar 

  65. Harvey, P.D., F. Adar, and H.B. Gray. 1989. Spectroscopic Properties of Binuclear Palladium(0) and Platinum(0) Dibenzylideneacetone Complexes. Journal of American Chemical Society 111: 1312–1315.

    Article  Google Scholar 

  66. Gugliotti, L.A., D.L. Feldheim, and B.E. Eaton. 2008. Eletter Concerning “RNA-Mediated Metal-Metal Bond Formation in the Synthesis of Hexagonal Palladium Nanoparticles”. Science Eletter.

    Google Scholar 

  67. Rouge, J.L., C.J. Ackerson, D.L. Feldheim, and B.E. Eaton. 2010. Cooperativity Between Two Selected RNA Pdases in the Synthesis of Pd Nanoparticles. Journal of Materials Chemistry 20: 8394–8398.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Franzen, S. (2021). Evolution in a Test Tube. In: University Responsibility for the Adjudication of Research Misconduct. Springer, Cham. https://doi.org/10.1007/978-3-030-68063-3_1

Download citation

Publish with us

Policies and ethics