Skip to main content

Reinforcement of Petroleum Wax By-Product Paraffins as Phase Change Materials for Thermal Energy Storage by Recycled Nanomaterials

  • Chapter
  • First Online:
Waste Recycling Technologies for Nanomaterials Manufacturing

Abstract

The energy derived from the solar activity is a source that can help solve the high demand that humanity presents in terms of thermal energy, but shows disadvantages due to the changes in prolonged periods and to the variability in very short times. The fundamental thing to take advantage of the higher amount of thermal energy derived from the sun is to count on storage systems that accumulate that energy in the form of latent heat. For this purpose, materials that change from the solid phase to the liquid (Phase Change Materials (PCMs)) are used; this way of storing and reserving energy is beneficial because large amounts of material are available, working isothermally during storage and releasing the energy stored in its solidification process. One of the advantages of latent heat storage is that said energy storage and its consequent delivery are presented in a minimal temperature range, called inter-phase or transition zone. The PCMs have appropriate characteristics for the storage of energy. At present, a diverse range of these materials is known with which it has been experienced, obtaining promising results; The most widely used materials are salts and some organic and inorganic materials; It is important to emphasize that these materials are difficult to regenerate insofar as they are subjected to work cycles, noting the decrease in their storage efficiency and consequent dissociation, and on the contrary, paraffins (petroleum by-product) are economical materials with good behavior in storage and with acceptable energy storage ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNTs:

Carbon nanotubes

DSC:

Differential scanning calorimeter

NEPCMs:

Nanocomposite-enhanced phase-change materials

PCMs:

Phase change materials

SEM:

Scanning electron microscope

UV:

Ultra-violet

References

  1. Leonard MD, Michaelides EE, Michaelides DN (2020) Energy storage needs for the substitution of fossil fuel power plants with renewables. Renew Energy 145:951–962

    Article  Google Scholar 

  2. Curtin J, McInerney C, Gallachóir BÓ, Hickey C, Deane P, Deeney P (2019) Quantifying stranding risk for fossil fuel assets and implications for renewable energy investment: a review of the literature. Renew Sustain Energy Rev 116:109402

    Article  Google Scholar 

  3. Nkwetta DN, Haghighat F (2014) Thermal energy storage with phase change material—a state-of-the art review. Sustain Cities Soc 10:87–100

    Article  Google Scholar 

  4. He M, Yang L, Lin W, Chen J, Mao X, Ma Z (2019) Preparation, thermal characterization and examination of phase change materials (PCMs) enhanced by carbon-based nanoparticles for solar thermal energy storage. J Energy Storage 25:100874

    Article  Google Scholar 

  5. Prieto C, Cabeza LF (2019) Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance. Appl Energy 254:113646

    Article  Google Scholar 

  6. Paksoy H, Sahan N (2012) Thermally enhanced paraffin for solar applications. Energy Proc 30:350–352

    Article  CAS  Google Scholar 

  7. Lingayat AB, Suple YR (2013) Review on phase change material as thermal energy storage medium: materials, application. Int J Eng Res Appl 3:916–921

    Google Scholar 

  8. Cui Y, Xie J, Liu J, Pan S (2015) Review of phase change materials integrated in building walls for energy saving. Proc Eng 121:763–770

    Article  CAS  Google Scholar 

  9. Mhike W, Focke WW, Mofokeng J, Luyt AS (2012) Thermally conductive phase-change materials for energy storage based on low-density polyethylene, soft Fischer-Tropsch wax and graphite. Thermochim Acta 527:75–82

    Article  CAS  Google Scholar 

  10. Hasnain S (1998) Review on sustainable thermal energy storage technologies, part I: heat storage materials and techniques. Energy Convers Manage 39(11):1127–1138

    Article  CAS  Google Scholar 

  11. Heine D (1980) Chemische und physikalische Eigenschaften von Latentwärmespeichermaterialien für Solarkraftwerke

    Google Scholar 

  12. Xu B, Li P, Chan C (2015) Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy 160:286–307

    Article  Google Scholar 

  13. Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123

    Article  CAS  Google Scholar 

  14. Khudhair AM, Farid MM (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manage 45(2):263–275

    Article  CAS  Google Scholar 

  15. Naumann R, Emons H-H (1989) Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials. J Therm Anal 35(3):1009–1031

    Article  CAS  Google Scholar 

  16. Paris J, Falardeau M, Villeneuve C (1993) Thermal storage by latent heat: a viable option for energy conservation in buildings. Energy Sources 15(1):85–93

    Article  CAS  Google Scholar 

  17. Nagano K, Mochida T, Takeda S, Domański R, Rebow M (2003) Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems. Appl Therm Eng 23(2):229–241

    Article  CAS  Google Scholar 

  18. Kousksou T, Jamil A, El Rhafiki T, Zeraouli Y (2010) Paraffin wax mixtures as phase change materials. Sol Energy Mater Sol Cells 94(12):2158–2165

    Article  CAS  Google Scholar 

  19. Evers AC, Medina MA, Fang Y (2010) Evaluation of the thermal performance of frame walls enhanced with paraffin and hydrated salt phase change materials using a dynamic wall simulator. Build Environ 45(8):1762–1768

    Article  Google Scholar 

  20. Kapsalis V, Karamanis D (2016) Solar thermal energy storage and heat pumps with phase change materials. Appl Therm Eng 99:1212–1224

    Article  Google Scholar 

  21. Sharma A, Tyagi VV, Chen C, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345

    Article  CAS  Google Scholar 

  22. Kenisarin MM, Kenisarina KM (2012) Form-stable phase change materials for thermal energy storage. Renew Sustain Energy Rev 16(4):1999–2040

    Article  CAS  Google Scholar 

  23. Sevault A, Kauko H, Bugge M, Banasiak K, Haugen N, Skreiberg Ø (2017) Phase change materials for thermal energy storage in low- and high-temperature applications: a state-of-the-art:1–53

    Google Scholar 

  24. Alexiades V, Solomon AD (1993) Mathematical modeling of melting and freezing processes. Hemisphere Publ. Corp., Washington

    Google Scholar 

  25. Smith A (1953) The crystal structure of the normal paraffin hydrocarbons. J Chem Phys 21(12):2229–2231

    Article  CAS  Google Scholar 

  26. Sequeira A (1994) Lubricant base oil and wax processing. CRC Press

    Google Scholar 

  27. Zaky MT, Mohamed NH, Farag AS, Soliman FS (2015) Raising the efficiency of petrolatum deoiling process by using non-polar modifier concentrates separated from paraffin wastes to produce different petroleum products. RSC Adv 5(88):71932–71941

    Article  CAS  Google Scholar 

  28. Mohamed NH (2012) Competitive study on separation and characterization of microcrystalline waxes using two deoiling techniques. Fuel Process Technol 96:116–122

    Article  CAS  Google Scholar 

  29. Zaky MT, Mohamed NH, Farag AS (2011) Separation of some paraffin wax grades using solvent extraction technique. Fuel Process Technol 92(10):2024–2029

    Article  CAS  Google Scholar 

  30. Zaky MT, Mohamed NH (2010) Comparative study on separation and characterization of high melting point macro-and micro-crystalline waxes. J Taiwan Inst Chem Eng 41(3):360–366

    Article  CAS  Google Scholar 

  31. Meyer G (2009) Thermal properties of micro-crystalline waxes in dependence on the degree of deoiling. SOFW J 135(8):43–50

    Google Scholar 

  32. Kuszlik A, Meyer G, Heezen P, Stepanski M (2010) Solvent-free slack wax de-oiling—physical limits. Chem Eng Res Des 88(9):1279–1283

    Article  CAS  Google Scholar 

  33. Ohlberg SM (1959) The stable crystal structures of pure n-paraffins contalmng an even number of carbon atoms in the range C30 to C36. J Phys Chem 63(2):248–250

    Article  CAS  Google Scholar 

  34. Esquena J, Vilasau J (2013) TF Tadros (ed) Formulation, characterization, and property control of paraffin emulsions. https://doi.org/10.1002/9783527647941

  35. Brown W, Marques MR (2013) 14 the United States pharmacopeia/national formulary. In: Generic drug product development: solid oral dosage forms, vol 319

    Google Scholar 

  36. Krupa I, Nógellová Z, Špitalský Z, Malíková M, Sobolčiak P, Abdelrazeq HW, Ouederni M, Karkri M, Janigová I, Al-Maadeed MAS (2015) Positive influence of expanded graphite on the physical behavior of phase change materials based on linear low-density polyethylene and paraffin wax. Thermochim Acta 614:218–225

    Article  CAS  Google Scholar 

  37. Mancin S, Diani A, Doretti L, Hooman K, Rossetto L (2015) Experimental analysis of phase change phenomenon of paraffin waxes embedded in copper foams. Int J Therm Sci 90:79–89

    Article  CAS  Google Scholar 

  38. Reyes A, Negrete D, Mahn A, Sepúlveda F (2014) Design and evaluation of a heat exchanger that uses paraffin wax and recycled materials as solar energy accumulator. Energy Convers Manage 88:391–398

    Article  CAS  Google Scholar 

  39. Oya T, Nomura T, Tsubota M, Okinaka N, Akiyama T (2013) Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles. Appl Therm Eng 61(2):825–828

    Article  CAS  Google Scholar 

  40. Yu S, Jeong S-G, Chung O, Kim S (2014) Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity. Sol Energy Mater Sol Cells 120:549–554

    Article  CAS  Google Scholar 

  41. Li M, Wu Z, Kao H, Tan J (2011) Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material. Energy Convers Manage 52(11):3275–3281

    Article  CAS  Google Scholar 

  42. Xu B, Li Z (2014) Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites. Energy 72:371–380

    Article  CAS  Google Scholar 

  43. Wang J, Xie H, Guo Z, Guan L, Li Y (2014) Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles. Appl Therm Eng 73(2):1541–1547

    Article  CAS  Google Scholar 

  44. Jiang X, Luo R, Peng F, Fang Y, Akiyama T, Wang S (2015) Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3. Appl Energy 137:731–737

    Article  CAS  Google Scholar 

  45. Jesumathy S, Udayakumar M, Suresh S (2012) Experimental study of enhanced heat transfer by addition of CuO nanoparticle. Heat Mass Transf 48(6):965–978

    Article  CAS  Google Scholar 

  46. Mohamed NH, Soliman FS, El Maghraby H, Moustfa Y (2017) Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina: energy storage. Renew Sustain Energy Rev 70:1052–1058

    Article  CAS  Google Scholar 

  47. Li J, Wang X, Qiao Y, Zhang Y, He Z, Zhang H (2015) High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites. Scripta Mater 109:72–75

    Article  CAS  Google Scholar 

  48. Dhmees AS, Rashad AM, Eliwa AA, Zawrah M (2019) Preparation and characterization of nano SiO2@ CeO2 extracted from blast furnace slag and uranium extraction waste for wastewater treatment. Ceram Int 45(6):7309–7317

    Article  CAS  Google Scholar 

  49. Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustain Chem Eng 5(9):2247–2253

    Article  CAS  Google Scholar 

  50. Ali GAM, Habeeb OA, Algarni H, Chong KF (2018) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. J Mater Sci 54:683–692

    Article  CAS  Google Scholar 

  51. Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy M, Algarni H, Hegde G (2017) Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans 46(40):14034–14044

    Article  CAS  Google Scholar 

  52. Ali GAM, Tan LL, Jose R, Yusoff MM, Chong KF (2014) Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery. Mater Res Bull 60:5–9

    Article  CAS  Google Scholar 

  53. Ali GAM, Yusoff MM, Shaaban ER, Chong KF (2017) High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram Int 43:8440–8448

    Article  CAS  Google Scholar 

  54. Ali GAM, Abdul Manaf SA, Kumar A, Chong KF, Hegde G (2014) High performance supercapacitor using catalysis free porous carbon nanoparticles. J Phys D-Appl Phys 47(49):495307–495313

    Article  CAS  Google Scholar 

  55. Aboelazm EAA, Ali GAM, Algarni H, Yin H, Zhong YL, Chong KF (2018) Magnetic electrodeposition of the hierarchical cobalt oxide nanostructure from spent lithium-ion batteries: its application as a supercapacitor electrode. J Phys Chem C 122(23):12200–12206

    Article  CAS  Google Scholar 

  56. Ali GAM, Yusoff MM, Algarni H, Chong KF (2018) One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance. Ceram Int 44(7):7799–7807

    Article  CAS  Google Scholar 

  57. Ali GAM, Supriya S, Chong KF, Shaaban ER, Algarni H, Maiyalagan T, Hegde G (2019) Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: a conversion of allium CEPA peel to energy storage system. Biomass Conv Bioref https://doi.org/10.1007/s13399-019-00520-3

  58. Ali GAM, Manaf SAA, Divyashree A, Chong KF, Hegde G (2016) Superior supercapacitive performance in porous nanocarbons. J Energy Chem 25(4):734–739

    Google Scholar 

  59. Afroz R, Masud MM, Akhtar R, Duasa JB (2013) Survey and analysis of public knowledge, awareness and willingness to pay in Kuala Lumpur, Malaysia—a case study on household WEEE management. J Clean Product 52:185–193

    Article  Google Scholar 

  60. Zeng X, Yang C, Chiang JF, Li J (2017) Innovating e-waste management: from macroscopic to microscopic scales. Sci Total Environ 575:1–5

    Article  CAS  Google Scholar 

  61. Ruan J, Huang J, Dong L, Huang Z (2017) Environmentally friendly technology of recovering nickel resources and producing nano-Al2O3 from waste metal film resistors. ACS Sustain Chem Eng 5(9):8234–8240

    Article  CAS  Google Scholar 

  62. Ilgin MA, Gupta SM (2010) Environmentally conscious manufacturing and product recovery (ECMPRO): a review of the state of the art. J Environ Manage 91(3):563–591

    Article  Google Scholar 

  63. Deep A, Kumar K, Kumar P, Kumar P, Sharma AL, Gupta B, Bharadwaj LM (2011) Recovery of pure ZnO nanoparticles from spent Zn–MnO2 alkaline batteries. Environ Sci Technol 45(24):10551–10556

    Article  CAS  Google Scholar 

  64. Dutta T, Kim K-H, Deep A, Szulejko JE, Vellingiri K, Kumar S, Kwon EE, Yun S-T (2018) Recovery of nanomaterials from battery and electronic wastes: a new paradigm of environmental waste management. Renew Sustain Energy Rev 82:3694–3704

    Article  CAS  Google Scholar 

  65. Li Y, Ye D, Sun Y, Wang Y, Shi B, Liu W, Guo R, Pei H, Zhao H, Zhang J (2020) Recycling materials from degraded lithium-ion batteries for Na-ion storage. Mater Today Energy 15:100368

    Article  Google Scholar 

  66. Qu J, Feng Y, Zhang Q, Cong Q, Luo C, Yuan X (2015) A new insight of recycling of spent Zn–Mn alkaline batteries: Synthesis of ZnxMn1−xO nanoparticles and solar light driven photocatalytic degradation of bisphenol A using them. J Alloy Compd 622:703–707

    Article  CAS  Google Scholar 

  67. Deep A, Sharma AL, Mohanta GC, Kumar P, Kim K-H (2016) A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries. Waste Manage 51:190–195

    Article  CAS  Google Scholar 

  68. Mantuano DP, Dorella G, Elias RCA, Mansur MB (2006) Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid–liquid extraction with Cyanex 272. J Power Sources 159(2):1510–1518

    Article  CAS  Google Scholar 

  69. Xi G, Li Y, Liu Y (2004) Study on preparation of manganese–zinc ferrites using spent Zn–Mn batteries. Mater Lett 58(7–8):1164–1167

    Article  CAS  Google Scholar 

  70. Gabal M, Al-Harthy E, Al Angari Y, Salam MA, Asiri A (2016) Synthesis, characterization and magnetic properties of MWCNTs decorated with Zn-substituted MnFe2O4 nanoparticles using waste batteries extract. J Magn Magn Mater 407:175–181

    Article  CAS  Google Scholar 

  71. Kim T, Senanayake G, Kang J, Sohn J, Rhee K, Lee S, Shin S (2009) Reductive acid leaching of spent zinc–carbon batteries and oxidative precipitation of Mn–Zn ferrite nanoparticles. Hydrometallurgy 96(1–2):154–158

    Article  CAS  Google Scholar 

  72. Nan J, Han D, Cui M, Yang M, Pan L (2006) Recycling spent zinc manganese dioxide batteries through synthesizing Zn–Mn ferrite magnetic materials. J Hazard Mater 133(1–3):257–261

    Article  CAS  Google Scholar 

  73. Duan X, Deng J, Wang X, Guo J, Liu P (2016) Manufacturing conductive polyaniline/graphite nanocomposites with spent battery powder (SBP) for energy storage: a potential approach for sustainable waste management. J Hazard Mater 312:319–328

    Article  CAS  Google Scholar 

  74. Wen X, Qiao X, Han X, Niu L, Huo L, Bai G (2016) Multifunctional magnetic branched polyethylenimine nanogels with in-situ generated Fe3O4 and their applications as dye adsorbent and catalyst support. J Mater Sci 51(6):3170–3181

    Article  CAS  Google Scholar 

  75. Xiang X, Xia F, Zhan L, Xie B (2015) Preparation of zinc nano structured particles from spent zinc manganese batteries by vacuum separation and inert gas condensation. Sep Purif Technol 142:227–233

    Article  CAS  Google Scholar 

  76. Xi G-X, Jiao Y-Z, Lu M-X (2008) Preparation of CoFe2O4 nanocrystal from spent lithium-ion batteries with coprecipitation method. Electron Compon Mater 27(5):19

    CAS  Google Scholar 

  77. Deng J, Wang X, Duan X, Liu P (2015) Facile preparation of MnO2/graphene nanocomposites with spent battery powder for electrochemical energy storage. ACS Sustain Chem Eng 3(7):1330–1338

    Article  CAS  Google Scholar 

  78. Yang L, Xi G, Lou T, Wang X, Wang J, He Y (2016) Preparation and magnetic performance of Co0.8Fe2.2O4 by a sol–gel method using cathode materials of spent Li-ion batteries. Ceram Int 42(1):1897–1902

    Google Scholar 

  79. Yao L, Xi Y, Xi G, Feng Y (2016) Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol−gel−hydrothermal route using spent Li-ion battery. J Alloy Compd 680:73–79

    Article  CAS  Google Scholar 

  80. Belcher AM, Chen P-Y, Hammond-Cunningham PT, Qi J (2017) Recycling car batteries for perovskite solar cells. Google Patents

    Google Scholar 

  81. Singh J, Lee B-K (2016) Recovery of precious metals from low-grade automobile shredder residue: a novel approach for the recovery of nanozero-valent copper particles. Waste Manage 48:353–365

    Article  CAS  Google Scholar 

  82. Xiu F-R, Zhang F-S (2012) Size-controlled preparation of Cu2O nanoparticles from waste printed circuit boards by supercritical water combined with electrokinetic process. J Hazard Mater 233:200–206

    Article  CAS  Google Scholar 

  83. Vermisoglou EC, Giannouri M, Todorova N, Giannakopoulou T, Lekakou C, Trapalis C (2016) Recycling of typical supercapacitor materials. Waste Manage Res 34(4):337–344

    Article  CAS  Google Scholar 

  84. Zhan L, Xiang X, Xie B, Sun J (2016) A novel method of preparing highly dispersed spherical lead nanoparticles from solders of waste printed circuit boards. Chem Eng J 303:261–267

    Article  CAS  Google Scholar 

  85. Wu J-Y, Chang F-C (2016) Recovery of nano-Al2O3 from waste aluminum electrolytic solution generated during the manufacturing of capacitors. Desalin Water Treat 57(60):29479–29487

    Article  CAS  Google Scholar 

  86. Hu Z, Kurien U, Murwira K, Ghoshdastidar A, Nepotchatykh O, Ariya PA (2016) Development of a green technology for mercury recycling from spent compact fluorescent lamps using iron oxides nanoparticles and electrochemistry. ACS Sustain Chem Eng 4(4):2150–2157

    Article  CAS  Google Scholar 

  87. Tunsu C, Petranikova M, Gergorić M, Ekberg C, Retegan T (2015) Reclaiming rare earth elements from end-of-life products: a review of the perspectives for urban mining using hydrometallurgical unit operations. Hydrometallurgy 156:239–258

    Article  CAS  Google Scholar 

  88. Bandara HD, Field KD, Emmert MH (2016) Rare earth recovery from end-of-life motors employing green chemistry design principles. Green Chem 18(3):753–759

    Article  CAS  Google Scholar 

  89. Dupont D, Binnemans K (2015) Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y2O3: Eu3+ from lamp phosphor waste. Green Chem 17(2):856–868

    Article  CAS  Google Scholar 

  90. Tan Q, Deng C, Li J (2016) Innovative application of mechanical activation for rare earth elements recovering: process optimization and mechanism exploration. Sci Rep 6:19961

    Article  CAS  Google Scholar 

  91. Bennett JA, Wilson K, Lee AF (2016) Catalytic applications of waste derived materials. J Mater Chem A 4(10):3617–3637

    Article  CAS  Google Scholar 

  92. Chen D, Li Q, Shao L, Zhang F, Qian G (2016) Recovery and application of heavy metals from pickling waste liquor (PWL) and electroplating wastewater (EPW) by the combination process of ferrite nanoparticles. Desalin Water Treat 57(60):29264–29273

    Article  CAS  Google Scholar 

  93. Tang B, Yuan L, Shi T, Yu L, Zhu Y (2009) Preparation of nano-sized magnetic particles from spent pickling liquors by ultrasonic-assisted chemical co-precipitation. J Hazard Mater 163(2–3):1173–1178

    Article  CAS  Google Scholar 

  94. Nabil M, Khodadadi J (2013) Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based nanostructure-enhanced phase change materials. Int J Heat Mass Transf 67:301–310

    Article  CAS  Google Scholar 

  95. Khodadadi J, Fan L, Babaei H (2013) Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev 24:418–444

    Article  CAS  Google Scholar 

  96. Chintakrinda K, Weinstein RD, Fleischer AS (2011) A direct comparison of three different material enhancement methods on the transient thermal response of paraffin phase change material exposed to high heat fluxes. Int J Therm Sci 50(9):1639–1647

    Article  CAS  Google Scholar 

  97. Pincemin S, Py X, Olives R, Christ M, Oettinger O (2008) Elaboration of conductive thermal storage composites made of phase change materials and graphite for solar plant. J Sol Energy Eng 130(1):011005

    Article  CAS  Google Scholar 

  98. Lafdi K, Mesalhy O, Elgafy A (2008) Merits of employing foam encapsulated phase change materials for pulsed power electronics cooling applications. J Electron Packag 130(2):021004

    Article  CAS  Google Scholar 

  99. Sarı A, Karaipekli A (2007) Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng 27(8–9):1271–1277

    Article  CAS  Google Scholar 

  100. Wu J, Feng Y, Liu C, Li H (2018) Heat transfer characteristics of an expanded graphite/paraffin PCM-heat exchanger used in an instantaneous heat pump water heater. Appl Therm Eng 142:644–655

    Article  CAS  Google Scholar 

  101. Xin G, Sun H, Scott SM, Yao T, Lu F, Shao D, Hu T, Wang G, Ran G, Lian J (2014) Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage. ACS Appl Mater Interfaces 6(17):15262–15271

    Article  CAS  Google Scholar 

  102. Teng T-P, Yu C-C (2012) Characteristics of phase-change materials containing oxide nano-additives for thermal storage. Nanoscale Res Lett 7(1):611

    Article  CAS  Google Scholar 

  103. Arasu AV, Mujumdar AS (2012) Numerical study on melting of paraffin wax with Al2O3 in a square enclosure. Int Commun Heat Mass Transfer 39(1):8–16

    Article  CAS  Google Scholar 

  104. Buddhi D, Sawhney R, Sehgal P, Bansal N (1987) A simplification of the differential thermal analysis method to determine the latent heat of fusion of phase change materials. J Phys D Appl Phys 20(12):1601

    Article  CAS  Google Scholar 

  105. Baetens R, Jelle B, Gustavsen A (2010) Phase change materials for building applications: a state-of-the-art review. Energy Build

    Google Scholar 

  106. Macía A (2007) Almacenamiento de Energía Solar Térmica Usando Cloruro de Magnesio Hexahidratado. 2007, Tesis de Maestría. Universidad Nacional de Colombia. Medellín

    Google Scholar 

  107. Pause B (2010) Phase change materials and their application in coatings and laminates for textiles. In: Smart textile coatings and laminates. Elsevier, pp 236–250

    Google Scholar 

  108. Nejman A, Cieślak M (2017) The impact of the heating/cooling rate on the thermoregulating properties of textile materials modified with PCM microcapsules. Appl Therm Eng 127:212–223

    Article  CAS  Google Scholar 

  109. Bahrar M, Djamai ZI, Mankibi ME, Larbi AS, Salvia M (2018) Numerical and experimental study on the use of microencapsulated phase change materials (PCMs) in textile reinforced concrete panels for energy storage. Sustain Cities Soc 41:455–468

    Article  Google Scholar 

  110. Nejman A, Goetzendorf-Grabowska B (2013) Heat balance of textile materials modified with the mixtures of PCM microcapsules. Thermochim Acta 569:144–150

    Article  CAS  Google Scholar 

  111. Haghighat F, Ravandi SAH, Esfahany MN, Valipouri A, Zarezade Z (2019) Thermal performance of electrospun core-shell phase change fibrous layers at simulated body conditions. Appl Therm Eng 161:113924

    Article  Google Scholar 

  112. Hassabo AG, Mohamed AL (2017) Enhancement the thermo-regulating property of cellulosic fabric using encapsulated paraffins in modified pectin. Carbohyd Polym 165:421–428

    Article  CAS  Google Scholar 

  113. Bai D, Feng H, Chen N, Tan L, Qiu J (2018) Synthesis, characterization and microwave characteristics of ATP/BaFe12O19/PANI ternary composites. J Magn Magn Mater 457:75–82

    Article  CAS  Google Scholar 

  114. Liu P, Yao Z, Zhou J (2016) Fabrication and microwave absorption of reduced graphene oxide/Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites. Ceram Int 42(7):9241–9249

    Google Scholar 

  115. Xu H, Yin X, Li Z, Liu C, Wang Z, Li M, Zhang L, Cheng L (2018) Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties. Nanotechnology 29(18):184003

    Article  CAS  Google Scholar 

  116. Jiang F, Wang X, Wu D (2014) Design and synthesis of magnetic microcapsules based on n-eicosane core and Fe3O4/SiO2 hybrid shell for dual-functional phase change materials. Appl Energy 134:456–468

    Article  CAS  Google Scholar 

  117. Vracknos N (2013) Method and apparatus of paraffin treatment of the skin. Google Patents

    Google Scholar 

  118. Zhang Q, He Z, Fang X, Zhang X, Zhang Z (2017) Experimental and numerical investigations on a flexible paraffin/fiber composite phase change material for thermal therapy mask. Energy Storage Mater 6:36–45

    Article  Google Scholar 

  119. de Lima FA, Gobinet C, Sockalingum G, Garcia SB, Manfait M, Untereiner V, Piot O, Bachmann L (2017) Digital de-waxing on FTIR images. Analyst 142(8):1358–1370

    Article  CAS  Google Scholar 

  120. Nallala J, Lloyd GR, Stone N (2015) Evaluation of different tissue de-paraffinization procedures for infrared spectral imaging. Analyst 140(7):2369–2375

    Article  CAS  Google Scholar 

  121. El-Maghrabi HH, Abdelmaged SM, Nada AA, Zahran F, Abd El-Wahab S, Yahea D, Hussein GM, Atrees MS (2017) Magnetic graphene based nanocomposite for uranium scavenging. J Hazardous Mate 322:370–379

    Google Scholar 

  122. El-Maghrabi HH, Al-Kahlawy AA, Nada AA, Zakia T (2018) Photocorrosion resistant Ag2CO3@Fe2O3/TiO2-NT nanocomposite for efficient visible light photocatalytic degradation activities. J Hazardous Mate 360:250–256

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fathi S. Soliman , Heba H. El-Maghrabi or Amr A. Nada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soliman, F.S., El-Maghrabi, H.H., Ali, G.A.M., Kammoun, M.A., Nada, A.A. (2021). Reinforcement of Petroleum Wax By-Product Paraffins as Phase Change Materials for Thermal Energy Storage by Recycled Nanomaterials. In: Makhlouf, A.S.H., Ali, G.A.M. (eds) Waste Recycling Technologies for Nanomaterials Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-68031-2_29

Download citation

Publish with us

Policies and ethics