Skip to main content

Advanced Waste Recycling Technologies for Manufacturing of Nanomaterials for Green Energy Applications

  • Chapter
  • First Online:
Waste Recycling Technologies for Nanomaterials Manufacturing

Abstract

The effect of waste accumulation can be enormously violent for several societies in developing countries. In the overworld, this problem becomes more difficult as there are no obvious specific strategies for actual solid waste management that causes severe environmental hazards. This chapter discusses the recent advances of wastes recycling environmentally friendly technologies to provide economic value toward reducing the high cost and additional ways for nanomaterial production in the petroleum field. It shows how carbon nanostructures can be formed from different waste materials such as waste natural oil, plastic wastes, heavy oil residue, waste engine oil, deoiled asphalt, and scrap tire that have the potential to cause incredible environmental damage in the form of water, air, and land pollution. Particular sorts of this wastes can be reused. However, most of them are left in landfill sites; waste recycling approach has a tremendous economic value besides to their environmental impact: for example, waste reduction, resource conservation, energy conservation, reduction gas emissions from the greenhouse, and reducing the extent of pollution in air and water sources. The chapter is consisting of three parts. Part one is describing carbon nanostructures such as carbon nanotubes, fibers, porous carbon, and microspheres that can be produced from different waste materials. The second part deals with a review of waste materials in the petroleum field that has the probable to cause incredible environmental damage in the form of water, air, and land pollution. Finally, the third part will discuss the multidisciplinary green approach toward the acquisition of high-value carbon-based nanomaterials as a natural precursor by using waste materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

Activated carbon

LOI:

Ignition loss

PCBs:

Printed circuit boards

WCOs:

Waste cooking oils

References

  1. Ali GAM, Habeeb OA, Algarni H, Chong KF (2018) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. J Mater Sci 54:683–692

    Article  CAS  Google Scholar 

  2. Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Application of response surface methodology for optimization of palm kernel shell activated carbon preparation factors for removal of H2S from industrial wastewater. J Teknologi 79(7):1–10

    Google Scholar 

  3. Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Low-cost and eco-friendly activated carbon from modified palm kernel shell for hydrogen sulfide removal from wastewater: adsorption and kinetic studies. Desalin Water Treat 84:205–214

    Article  CAS  Google Scholar 

  4. Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Experimental design technique on removal of hydrogen sulfide using CaO-eggshells dispersed onto palm kernel shell activated carbon: experiment, optimization, equilibrium and kinetic studies. J Wuhan Univ Technol-Mater Sci Ed 32(2):305–320

    Google Scholar 

  5. Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Isothermal modelling based experimental study of dissolved hydrogen sulfide adsorption from waste water using eggshell based activated carbon. Malaysian J Anal Sci 21(2):334–345

    Article  Google Scholar 

  6. Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Optimization of activated carbon synthesis using response surface methodology to enhance H2S removal from refinery wastewater. J Chem Eng Ind Biotechnol 1(1):1–17

    Google Scholar 

  7. Habeeb OA, Ramesh K, Ali GAM, Yunus RM, Thanusha TK, Olalere OA (2016) Modeling and optimization for H2S adsorption from wastewater using coconut shell based activated carbon. Aust J Basic Appl Sci 10(17):136–147

    CAS  Google Scholar 

  8. Patra JK, Baek K-H (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014:1–12

    Article  CAS  Google Scholar 

  9. Silva GA (2008) Nanotechnology approaches to crossing the blood-brain barrier and drug delivery to the CNS. BMC Neurosci 9(S3)

    Google Scholar 

  10. Pantarotto D, Briand J-P, Prato M, Bianco A (2004) Translocation of bioactive peptides across cell membranes by carbon nanotubes Electronic supplementary information (ESI) available: details of the synthesis and characterization, cell culture, TEM, epifluorescence and confocal microscopy images of CNTs 1, 2 and fluorescein. http://www.rsc.org/suppdata/cc/b3/b311254c. Chemical Communications (1):16

  11. Brunner PH, Rechberger H (2015) Waste to energy—key element for sustainable waste management. Waste Manag 37:3–12

    Article  CAS  Google Scholar 

  12. Chandler AJ, Eighmy T, Hartlen J, Hjelmar O, Kosson D, Sawell S, van der Sloot HA, Vehlow J (1990) Treatise on municipal solid waste incinerator residues. Contaminated soil ’90. Springer, Netherlands, pp 1309–1310

    Chapter  Google Scholar 

  13. Vergara SE, Tchobanoglous G (2012) Municipal solid waste and the environment: a global perspective. Annu Rev Environ Resour 37(1):277–309

    Article  Google Scholar 

  14. White P, Franke M, Hindle P (1995) A lifecycle inventory of solid waste. Integrated solid waste management: a lifecycle inventory. Springer, US, pp 37–62

    Chapter  Google Scholar 

  15. Cheremisinoff NP (2003) Municipal solid waste. In: Handbook of solid waste management and waste minimization technologies. Elsevier, Netherlands, pp 34–95

    Google Scholar 

  16. Demirbas A (2011) Waste management, waste resource facilities and waste conversion processes. Energy Convers Manag 52(2):1280–1287

    Article  Google Scholar 

  17. Dixon N, Jones DRV (2005) Engineering properties of municipal solid waste. Geotext Geomembr 23(3):205–233

    Article  Google Scholar 

  18. Tchobanoglous G, Theisen H, Vigil S (1993) Integrated solid waste management: engineering principles and management issues. McGraw-Hill

    Google Scholar 

  19. Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy MV, Algarni H, Hegde G (2017) Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans 46(40):14034–14044

    Article  CAS  Google Scholar 

  20. Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustain Chem Eng 5(9):2247–2253

    Article  CAS  Google Scholar 

  21. Kreith F (1999) Handbook of solid waste management

    Google Scholar 

  22. Ali GAM, Supriya S, Chong KF, Shaaban ER, Algarni H, Maiyalagan T, Hegde G (2019) Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: a conversion of Allium cepa peel to energy storage system. Biomass Conv Bioref. https://doi.org/10.1007/s13399-019-00520-3

  23. Ali GAM, Manaf SAA, A D, Chong KF, Hegde G (2016) Superior supercapacitive performance in porous nanocarbons. J Energy Chem 25(4):734–739

    Article  Google Scholar 

  24. Gupta N, Yadav KK, Kumar V (2015) A review on current status of municipal solid waste management in India. J Environ Sci 37:206–217

    Article  Google Scholar 

  25. de Souza Vitorino, Melaré A, Montenegro González S, Faceli K, Casadei V (2017) Technologies and decision support systems to aid solid-waste management: a systematic review. Waste Manag 59:567–584

    Article  Google Scholar 

  26. Bing X, Bloemhof JM, Ramos TRP, Barbosa-Povoa AP, Wong CY, van der Vorst JGAJ (2016) Research challenges in municipal solid waste logistics management. Waste Manag 48:584–592

    Article  Google Scholar 

  27. Agagu O (2009) Threats to the Nigerian environment: a call for positive action. Being a paper delivered at the, 3–11

    Google Scholar 

  28. Njeru J (2006) The urban political ecology of plastic bag waste problem in Nairobi, Kenya. Geoforum 37(6):1046–1058

    Article  Google Scholar 

  29. Vongdala N, Tran H-D, Xuan T, Teschke R, Khanh T (2018) Heavy metal accumulation in water, soil, and plants of municipal solid waste landfill in Vientiane, Laos. Int J Environ Res Public Health 16(1):22

    Article  CAS  Google Scholar 

  30. Afre RA, Soga T, Jimbo T, Kumar M, Ando Y, Sharon M, Somani PR, Umeno M (2006) Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies. Microporous Mesoporous Mater 96(1–3):184–190

    Article  CAS  Google Scholar 

  31. Ghosh P, Afre RA, Soga T, Jimbo T (2007) A simple method of producing single-walled carbon nanotubes from a natural precursor: eucalyptus oil. Mater Lett 61(17):3768–3770

    Article  CAS  Google Scholar 

  32. Kumar R, Tiwari R, Srivastava O (2011) Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil. Nanoscale Res Lett 6(1):92

    Article  CAS  Google Scholar 

  33. Suriani AB, Azira AA, Nik SF, Md Nor R, Rusop M (2009) Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor. Mater Lett 63(30):2704–2706

    Article  CAS  Google Scholar 

  34. Ali GAM, Abdul Manaf SA, Kumar A, Chong KF, Hegde G (2014) High performance supercapacitor using catalysis free porous carbon nanoparticles. J Phys D Appl Phys 47(49):495307–495313

    Article  CAS  Google Scholar 

  35. Azmina MS, Suriani AB, Salina M, Azira AA, Dalila AR, Asli NA, Rosly J, Nor RM, Rusop M (2012) Variety of bio-hydrocarbon precursors for the synthesis of carbon nanotubes. Nano Hybrids 2:43–63

    Article  CAS  Google Scholar 

  36. Dalila AR, Suriani AB, Rosmi MS, Rosazley R, Rosli J, Rusop M (2013) Carbon nanotubes: a brief outlook on history, synthesis methods and various bio-hydrocarbon sources. Adv Mater Res 832:792–797

    Article  CAS  Google Scholar 

  37. Ayranci E, Duman O (2009) In-situ UV-visible spectroscopic study on the adsorption of some dyes onto activated carbon cloth. Sep Sci Technol 44(15):3735–3752

    Article  CAS  Google Scholar 

  38. Abioye AM, Ani FN (2015) Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renew Sustain Energy Rev 52:1282–1293

    Article  CAS  Google Scholar 

  39. Skodras G, Diamantopoulou I, Zabaniotou A, Stavropoulos G, Sakellaropoulos GP (2007) Enhanced mercury adsorption in activated carbons from biomass materials and waste tires. Fuel Process Technol 88(8):749–758

    Article  CAS  Google Scholar 

  40. Shehzad A, Bashir MJK, Sethupathi S, Lim J-W (2015) An overview of heavily polluted landfill leachate treatment using food waste as an alternative and renewable source of activated carbon. Process Saf Environ Prot 98:309–318

    Article  CAS  Google Scholar 

  41. Bentsen NS, Felby C, Thorsen BJ (2014) Agricultural residue production and potentials for energy and materials services. Prog Energy Combust Sci 40:59–73

    Article  Google Scholar 

  42. Nabais JMV, Laginhas C, Carrott MMLR, Carrott PJM, Amorós JEC, Gisbert AVN (2013) Surface and porous characterisation of activated carbons made from a novel biomass precursor, the esparto grass. Appl Surf Sci 265:919–924

    Article  CAS  Google Scholar 

  43. Shrestha RM, Varga I, Bajtai J, Varga M (2013) Design of surface functionalization of waste material originated charcoals by an optimized chemical carbonization for the purpose of heavy metal removal from industrial waste waters. Microchem J 108:224–232

    Article  CAS  Google Scholar 

  44. Kadirvelu K, Kavipriya M, Karthika C, Radhika M, Vennilamani N, Pattabhi S (2003) Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Biores Technol 87(1):129–132

    Article  CAS  Google Scholar 

  45. Taer E (2018) Activated carbon electrode made from coconut husk waste for supercapacitor application. Int J Electrochem Sci, 12072–12084

    Google Scholar 

  46. Alslaibi TM, Abustan I, Ahmad MA, Foul AA (2013) Cadmium removal from aqueous solution using microwaved olive stone activated carbon. J Environ Chem Eng 1(3):589–599

    Article  CAS  Google Scholar 

  47. Chand R, Watari T, Inoue K, Torikai T, Yada M (2009) Evaluation of wheat straw and barley straw carbon for Cr(VI) adsorption. Sep Purif Technol 65(3):331–336

    Article  CAS  Google Scholar 

  48. Hammud KK, Aboob RM, Hassan MS, Zanad DE, Khali̇l MH (2018) Preparation of activated carbon from waste cooked tea for using as chemical dyes-filter. Eurasia Proc Sci Technol Eng Math 4:15–20

    Google Scholar 

  49. Gil RR, Ruiz B, Lozano MS, Martín MJ, Fuente E (2014) VOCs removal by adsorption onto activated carbons from biocollagenic wastes of vegetable tanning. Chem Eng J 245:80–88

    Article  CAS  Google Scholar 

  50. Lopez-Anton MA, Gil RR, Fuente E, Díaz-Somoano M, Martínez-Tarazona MR, Ruiz B (2015) Activated carbons from biocollagenic wastes of the leather industry for mercury capture in oxy-combustion. Fuel 142:227–234

    Article  CAS  Google Scholar 

  51. Guo J, Lua A (2000) Preparation and characterization of adsorbents from oil palm fruit solid wastes

    Google Scholar 

  52. Issabayeva G, Aroua MK, Sulaiman NMN (2006) Removal of lead from aqueous solutions on palm shell activated carbon. Biores Technol 97(18):2350–2355

    Article  CAS  Google Scholar 

  53. Daud W (2004) Comparison on pore development of activated carbon produced from palm shell and coconut shell. Biores Technol 93(1):63–69

    Article  CAS  Google Scholar 

  54. Awwad NS, El-Zahhar AA, Fouda AM, Ibrahium HA (2013) Removal of heavy metal ions from ground and surface water samples using carbons derived from date pits. J Environ Chem Eng 1(3):416–423

    Article  CAS  Google Scholar 

  55. Gruz J, Ayaz FA, Torun H, Strnad M (2011) Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chem 124(1):271–277

    Google Scholar 

  56. Mendoza-Carrasco R, Cuerda-Correa EM, Alexandre-Franco MF, Fernández-González C, Gómez-Serrano V (2016) Preparation of high-quality activated carbon from polyethyleneterephthalate (PET) bottle waste. Its use in the removal of pollutants in aqueous solution. J Environ Manage 181:522–535

    Article  CAS  Google Scholar 

  57. Xiang D, Mou P, Wang J, Duan G, Zhang HC (2006) Printed circuit board recycling process and its environmental impact assessment. Int J Adv Manuf Technol 34(9–10):1030–1036

    Google Scholar 

  58. Wong MH, Wu SC, Deng WJ, Yu XZ, Luo Q, Leung AOW, Wong CSC, Luksemburg WJ, Wong AS (2007) Export of toxic chemicals—a review of the case of uncontrolled electronic-waste recycling. Environ Pollut 149(2):131–140

    Article  CAS  Google Scholar 

  59. Xu M, Hadi P, Chen G, McKay G (2014) Removal of cadmium ions from wastewater using innovative electronic waste-derived material. J Hazard Mater 273:118–123

    Article  CAS  Google Scholar 

  60. Hadi P, Barford J, McKay G (2014) Selective toxic metal uptake using an e-waste-based novel sorbent–Single, binary and ternary systems. J Environ Chem Eng 2(1):332–339

    Article  CAS  Google Scholar 

  61. Nahil MA, Williams PT (2010) Activated carbons from acrylic textile waste. J Anal Appl Pyrol 89(1):51–59

    Article  CAS  Google Scholar 

  62. Dhiman P, Naushad M, Batoo KM, Kumar A, Sharma G, Ghfar AA, Kumar G, Singh M (2017) Nano Fe x Zn 1 − x O as a tuneable and efficient photocatalyst for solar powered degradation of bisphenol A from aqueous environment. J Clean Prod 165:1542–1556

    Article  CAS  Google Scholar 

  63. Zhang Y, Dubé MA, McLean DD, Kates M (2003) Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90(3):229–240

    Google Scholar 

  64. Nam LTH, Vinh TQ, Loan NTT, Tho VDS, Yang X-Y, Su B-L (2011) Preparation of bio-fuels by catalytic cracking reaction of vegetable oil sludge. Fuel 90(3):1069–1075

    Article  CAS  Google Scholar 

  65. Ajala OE, Aberuagba F, Odetoye TE, Ajala AM (2015) Biodiesel: sustainable energy replacement to petroleum-based diesel fuel—a review. ChemBioEng Rev 2(3):145–156

    Article  Google Scholar 

  66. Zhang Q, Wang T, Xu Y, Zhang Q, Ma L (2014) Production of liquid alkanes by controlling reactivity of sorbitol hydrogenation with a Ni/HZSM-5 catalyst in water. Energy Convers Manag 77:262–268

    Article  CAS  Google Scholar 

  67. Negm NA, Rabie AM, Mohammed EA (2018) Molecular interaction of heterogeneous catalyst in catalytic cracking process of vegetable oils: chromatographic and biofuel performance investigation. Appl Catal B 239:36–45

    Article  CAS  Google Scholar 

  68. Negm NA, Betiha MA, Alhumaimess MS, Hassan HMA, Rabie AM (2019) Clean transesterification process for biodiesel production using heterogeneous polymer-heteropoly acid nanocatalyst. J Clean Prod 238:117854

    Article  CAS  Google Scholar 

  69. Rabie AM, Mohammed EA, Negm NA (2018) Feasibility of modified bentonite as acidic heterogeneous catalyst in low temperature catalytic cracking process of biofuel production from nonedible vegetable oils. J Mol Liq 254:260–266

    Article  CAS  Google Scholar 

  70. Baskar G, Soumiya S (2016) Production of biodiesel from castor oil using iron (II) doped zinc oxide nanocatalyst. Renew Energy 98:101–107

    Article  CAS  Google Scholar 

  71. Nekouei S, Nekouei F, Canselier JP (2016) Solid-phase extraction for simultaneous separation and preconcentration of Fe(III) and Zn(II) traces using three chelatants and Ramelak bark-derived activated carbon as a new bio-sorbent. Sep Sci Technol 52(5):824–833

    Article  CAS  Google Scholar 

  72. Negm NA, Sayed GH, Yehia FZ, Habib OI, Mohamed EA (2017) Biodiesel production from one-step heterogeneous catalyzed process of Castor oil and Jatropha oil using novel sulphonated phenyl silane montmorillonite catalyst. J Mol Liq 234:157–163

    Article  CAS  Google Scholar 

  73. Sadeek SA, Mohammed EA, Shaban M, Abou Kana MTH, Negm NA (2020) Synthesis, characterization and catalytic performances of activated carbon-doped transition metals during biofuel production from waste cooking oils. J Mol Liq 306:112749

    Article  CAS  Google Scholar 

  74. Joshi S, Adhikari M, Pradhananga RR (2013) Adsorption of fluoride ion onto zirconyl-impregnated activated carbon prepared from lapsi seed stone. J Nepal Chem Soc 30:13–23

    Article  CAS  Google Scholar 

  75. International A (2010) Standard test method for sulfur in petroleum and petroleum products by energy dispersive X-ray fluorescence spectrometry. ASTM International

    Google Scholar 

  76. ASTM (1996) Standard test method for pour point of petroleum products. Annual book of ASTM standards

    Google Scholar 

  77. D-97 AS (2006) Standard test method for pour point of petroleum products. ASTM International West Conshohocken, PA

    Google Scholar 

  78. Standard A (2007) D5773: Standard test method for cloud point of petroleum products (constant cooling rate method). ASTM, West Conshohocken, PA (USA)

    Google Scholar 

  79. ASTM Committee D-2 on Petroleum Products LF and Lubricants (2015) Standard test method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity). ASTM International

    Google Scholar 

  80. International A (2011) Standard test method for density, relative density, and API gravity of liquids by digital density meter. ASTM International

    Google Scholar 

  81. Senra M, McCartney SN, Soh L (2019) The effect of bio-derived additives on fatty acid methyl esters for improved biodiesel cold flow properties. Fuel 242:719–727

    Article  CAS  Google Scholar 

  82. Alslaibi TM, Abustan I, Ahmad MA, Foul AA (2013) A review: production of activated carbon from agricultural by-products via conventional and microwave heating. J Chem Technol Biotechnol 88(7):1183–1190

    Article  CAS  Google Scholar 

  83. Negm NA, Shaalan MA, Barouty GSE, Mohamed MY (2016) Preparation and evaluation of biodiesel from Egyptian castor oil from semi-treated industrial wastewater. J Taiwan Inst Chem Eng 63:151–156

    Article  CAS  Google Scholar 

  84. Negm NA, Zahran MK, Abd Elshafy MR, Aiad IA (2018) Transformation of Jatropha oil to biofuel using transition metal salts as heterogeneous catalysts. J Mol Liq 256:16–21

    Article  CAS  Google Scholar 

  85. Ibrahim MM, Agblevor FA, El-Zawawy WK (2010) Isolation and characterization of cellulose and lignin from steam-exploded lignocellulosic biomass. BioResources 5(1):397–418

    CAS  Google Scholar 

  86. Sun K, Lu J, Ma L, Han Y, Fu Z, Ding J (2015) A comparative study on the catalytic performance of different types of zeolites for biodiesel production. Fuel 158:848–854

    Article  CAS  Google Scholar 

  87. Giuliano Albo PA, Lago S, Wolf H, Pagel R, Glen N, Clerck M, Ballereau P (2017) Density, viscosity and specific heat capacity of diesel blends with rapeseed and soybean oil methyl ester. Biomass Bioenerg 96:87–95

    Article  CAS  Google Scholar 

  88. Negm NA, Sayed GH, Habib OI, Yehia FZ, Mohamed EA (2017) Heterogeneous catalytic transformation of vegetable oils into biodiesel in one-step reaction using super acidic sulfonated modified mica catalyst. J Mol Liq 237:38–45

    Article  CAS  Google Scholar 

  89. Small CC, Hashisho Z, Ulrich AC (2012) Preparation and characterization of activated carbon from oil sands coke. Fuel 92(1):69–76

    Article  CAS  Google Scholar 

  90. Allen EW (2008) Process water treatment in Canada’s oil sands industry: I. Target pollutants and treatment objectives. J Environ Eng Sci 7(2):123–138

    Google Scholar 

  91. Fedorak P, Coy D (2006) Oil sands cokes affect microbial activities. Fuel 85(12–13):1642–1651

    Article  CAS  Google Scholar 

  92. Paslawski JC, Headley JV, Hill GA, Nemati M (2008) Biodegradation kinetics of trans-4-methyl-1-cyclohexane carboxylic acid. Biodegradation 20(1):125–133

    Article  CAS  Google Scholar 

  93. Furimsky E (1998) Gasification of oil sand coke: review. Fuel Process Technol 56(3):263–290

    Article  CAS  Google Scholar 

  94. Karanfil T, Kilduff JE (1999) Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 1. Priority Pollutants. Environ Sci Technol 33(18):3217–3224

    Google Scholar 

  95. Chang C-F, Chang C-Y, Tsai W-T (2000) Effects of burn-off and activation temperature on preparation of activated carbon from corn cob agrowaste by CO2 and steam. J Colloid Interface Sci 232(1):45–49

    Article  CAS  Google Scholar 

  96. Kawano T, Kubota M, Onyango MS, Watanabe F, Matsuda H (2008) Preparation of activated carbon from petroleum coke by KOH chemical activation for adsorption heat pump. Appl Therm Eng 28(8–9):865–871

    Article  CAS  Google Scholar 

  97. Shawwa AR, Smith DW, Sego DC (2001) Color and chlorinated organics removal from pulp mills wastewater using activated petroleum coke. Water Res 35(3):745–749

    Article  CAS  Google Scholar 

  98. DiPanfilo R, Egiebor NO (1996) Activated carbon production from synthetic crude coke. Fuel Process Technol 46(3):157–169

    Article  CAS  Google Scholar 

  99. Stavropoulos GG, Zabaniotou AA (2009) Minimizing activated carbons production cost. Fuel Process Technol 90(7–8):952–957

    Article  CAS  Google Scholar 

  100. Azhar Uddin M, Shinozaki Y, Furusawa N, Yamada T, Yamaji Y, Sasaoka E (2007) Preparation of activated carbon from asphalt and heavy oil fly ash and coal fly ash by pyrolysis. J Anal Appl Pyrol 78(2):337–342

    Article  CAS  Google Scholar 

  101. Kueh B, Kapsi M, Veziri CM, Athanasekou C, Pilatos G, Reddy KSK, Raj A, Karanikolos GN (2018) Asphaltene-derived activated carbon and carbon nanotube membranes for CO2 separation. Energy Fuels 32(11):11718–11730

    Article  CAS  Google Scholar 

  102. Harrison C (1994) The engineering aspects of a used oil recycling project. Waste Manag 14(3–4):231–235

    Article  Google Scholar 

  103. Ali MF, Rahman F, Hamdan AJ (1996) Techno-economic evaluation of waste lube oil rerefining. Int J Prod Econ 42(3):263–273

    Article  Google Scholar 

  104. Gañan J, González-Garcı́a CM, González JF, Sabio E, Macı́as-Garcı́a A, Dı́az-Dı́ez MA (2004) Preparation of activated carbons from bituminous coal pitches. Appl Surf Sci 238(1–4):347–354

    Article  CAS  Google Scholar 

  105. Shawabkeh R, Khlaifat A, Khashman O, Tarawneh S (2006) Synthesis of activated carbon from spent lubricating oil and application for adsorption of cadmium and lead ions from aqueous solution. NATO security through science series. Springer, Netherlands, pp 195–200

    Google Scholar 

  106. Luechinger NA, Grass RN, Athanassiou EK, Stark WJ (2010) Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chem Mater 22(1):155–160

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tahany Mahmoud or Eslam A. Mohamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmoud, T., Sayed, M.A., Ragab, A.A., Mohamed, E.A. (2021). Advanced Waste Recycling Technologies for Manufacturing of Nanomaterials for Green Energy Applications. In: Makhlouf, A.S.H., Ali, G.A.M. (eds) Waste Recycling Technologies for Nanomaterials Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-68031-2_21

Download citation

Publish with us

Policies and ethics