Skip to main content

Mechanical Properties of 3D-Printed Elastomers Produced by Fused Deposition Modeling

  • Chapter
  • First Online:
Fused Deposition Modeling Based 3D Printing

Abstract

Recent advances in the development of elastomeric thermoplastic filaments have enabled the production of elastomeric components using fused deposition modeling. The unique mechanical properties of elastomers and the vast design space of additive manufacturing provide new opportunities to develop structural parts with tailored mechanical behavior. Understanding the mechanical behavior of FDM-produced elastomers is an essential part of realizing these opportunities and ensuring the reliable operation of printed parts in service. This chapter presents an overview of the current knowledge about the mechanical behavior of FDM-produced elastomers. The chapter first presents some introductory information about FDM and the mechanical behavior of elastomers. The subsequent discussion presents the effects of the primary process parameters, namely, nozzle temperature, raster orientation, build orientation, and infill ratio on the mechanical properties. Finally, recent findings on elastomeric composites and cellular structures are discussed, and future research directions are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masood SH (1996) Intelligent rapid prototyping with fused deposition modelling. Rapid Prototyp J 2:24–33. https://doi.org/10.1108/13552549610109054

    Article  Google Scholar 

  2. Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3:42–53. https://doi.org/10.1007/s40436-014-0097-7

    Article  Google Scholar 

  3. Liu Z, Wang Y, Wu B, Cui C, Guo Y, Yan C (2019) A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int J Adv Manuf Technol 102:2877–2889. https://doi.org/10.1007/s00170-019-03332-x

    Article  Google Scholar 

  4. Jaisingh Sheoran A, Kumar H (2020) Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research. Mater Today: Proc 21:1659–1672. https://doi.org/10.1016/j.matpr.2019.11.296

    Article  Google Scholar 

  5. Rahim TNAT, Abdullah AM, Akil HM (2019) Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites. Polym Rev 59:589–624. https://doi.org/10.1080/15583724.2019.1597883

    Article  Google Scholar 

  6. Beda T (2007) Modeling hyperelastic behavior of rubber: A novel invariant-based and a review of constitutive models. J Polym Sci, Part B: Polym Phys 45:1713–1732. https://doi.org/10.1002/polb.20928

    Article  Google Scholar 

  7. Marckmann G, Verron E (2006) Comparison of hyperelastic models for rubber-like materials. Rubber Chem Technol 79:835–858. https://doi.org/10.5254/1.3547969

    Article  Google Scholar 

  8. Dal H, Gültekin O, Açıkgöz K (2020) An extended eight-chain model for hyperelastic and finite viscoelastic response of rubberlike materials: Theory, experiments and numerical aspects. J Mech Phys Solids 145:104159. https://doi.org/10.1016/j.jmps.2020.104159

    Article  MathSciNet  Google Scholar 

  9. Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11:582–592. https://doi.org/10.1063/1.1712836

    Article  MATH  Google Scholar 

  10. Rivlin RS (1948) Large elastic deformations of isotropic materials IV. further developments of the general theory. Phil Trans R Soc Lond A 241:379–397. https://doi.org/10.1098/rsta.1948.0024

    Article  MathSciNet  MATH  Google Scholar 

  11. Treloar LRG (1943) The elasticity of a network of long-chain molecules—II. Trans Faraday Soc 39:241–246. https://doi.org/10.1039/TF9433900241

    Article  Google Scholar 

  12. Valanis KC, Landel RF (1967) The strain-energy function of a hyperelastic material in terms of the extension ratios. J Appl Phys 38:2997–3002. https://doi.org/10.1063/1.1710039

    Article  Google Scholar 

  13. Ogden RW, Hill R (1972) Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond Math Phys Sci 326:565–584. https://doi.org/10.1098/rspa.1972.0026

    Article  MATH  Google Scholar 

  14. Kilian H-G (1981) Equation of state of real networks. Polymer 22:209–217. https://doi.org/10.1016/0032-3861(81)90200-7

    Article  Google Scholar 

  15. Kilian H-G, Enderle HF, Unseld K (1986) The use of the van der Waals model to elucidate universal aspects of structure-property relationships in simply extended dry and swollen rubbers. Colloid & Polymer Sci 264:866–876. https://doi.org/10.1007/BF01410637

    Article  Google Scholar 

  16. Yeoh OH (1990) Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem Technol 63:792–805. https://doi.org/10.5254/1.3538289

    Article  Google Scholar 

  17. Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41:389–412. https://doi.org/10.1016/0022-5096(93)90013-6

    Article  MATH  Google Scholar 

  18. Reppel T, Weinberg K (2018) Identification of hyper‐ and viscoelastic properties of different flexible FDM printed specimens. Proc Appl Math Mech 18. https://doi.org/10.1002/pamm.201800382

  19. Markovitz H Boltzmann and the Beginnings of Linear Viscoelasticity| Kopernio. https://kopernio.com/viewer?doi=10.1122%2F1.549444&token=WzE2MDE1ODksIjEwLjExMjIvMS41NDk0NDQiXQ.qXZt8MCPiE1eeRu2Z2g1vZWF08Y. Accessed 16 October 2020

  20. Banks H, Hu S, Kenz Z (2011) A Brief Review of Elasticity and Viscoelasticity. Adv Appl Math Mech 3. https://doi.org/10.4208/aamm.10-m1030

  21. Drapaca CS, Sivaloganathan S, Tenti G Nonlinear constitutive laws in viscoelasticity|Kopernio. https://kopernio.com/viewer?doi=10.1177%2F1081286506062450&token=WzE2MDE1ODksIjEwLjExNzcvMTA4MTI4NjUwNjA2MjQ1MCJd._AmW8IxAy6fQ8QMkuPrH0KAU0Fk. Accessed 16 October 2020

  22. Wineman A (2009) Nonlinear viscoelastic solids—A review. Math Mech Solids 14:300–366. https://doi.org/10.1177/1081286509103660

    Article  MathSciNet  MATH  Google Scholar 

  23. Christensen RM (1980) A nonlinear theory of viscoelasticity for application to elastomers. J Appl Mech 47:762–768. https://doi.org/10.1115/1.3153787

    Article  MathSciNet  MATH  Google Scholar 

  24. Hohimer C, Aliheidari N, Mo C, Ameli A (2017) Mechanical Behavior of 3D Printed Multiwalled Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites. Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems

    Google Scholar 

  25. Bi H, Ren Z, Guo R, Xu M, Song Y (2018) Fabrication of flexible wood flour/thermoplastic polyurethane elastomer composites using fused deposition molding. Ind Crops Prod 122:76–84. https://doi.org/10.1016/j.indcrop.2018.05.059

    Article  Google Scholar 

  26. Fenner Inc. N (2019) Technical Specifications of NinjaFlex 3D printing filament

    Google Scholar 

  27. Fenner Inc. N (2018) Technical Specifications of Cheetah 3D printing filament

    Google Scholar 

  28. dddrop BV. (2020) Technical Datasheet for TPU Filament

    Google Scholar 

  29. Herzberger J, Sirrine JM, Williams CB, Long TE (2019) Polymer Design for 3D Printing Elastomers: Recent Advances in Structure, Properties, and Printing. Prog Polym Sci. https://doi.org/10.1016/j.progpolymsci.2019.101144

  30. Chaudhry MS, Czekanski A (2020) Evaluating FDM Process Parameter Sensitive Mechanical Performance of Elastomers at Various Strain Rates of Loading. Materials 13:3202. https://doi.org/10.3390/ma13143202

    Article  Google Scholar 

  31. Formfutura BV. (2016) Technical Datasheet for Flexifil Filament

    Google Scholar 

  32. E.I. du Pont de Nemours and Company (2017) DuPontTM Hytrel® 3D4000FL NC010 product information

    Google Scholar 

  33. Yarwindran M, Sa’aban NA, Ibrahim M, Periyasamy R (2016) Thermoplastic elastomer infill pattern impact on mechanical properties 3D printed customized orthotic insole. ARPN Journal of Engineering and Applied Sciences. 11:7

    Google Scholar 

  34. Banerjee SS, Burbine S, Kodihalli Shivaprakash N, Mead J (2019) 3D-Printable PP/SEBS Thermoplastic Elastomeric Blends: Preparation and Properties. Polymers 11:347. https://doi.org/10.3390/polym11020347

    Article  Google Scholar 

  35. Kepenekci M, Özerinç S (2020) Unpublished work

    Google Scholar 

  36. Messimer P, O’Toole B, Trabia M (2020) Identification of the Mechanical Characteristics of 3D Printed NinjaFlex®. American Society of Mechanical Engineers Digital Collection

    Google Scholar 

  37. Miller AT, Safranski DL, Wood C, Guldberg RE, Gall K (2017) Deformation and fatigue of tough 3D printed elastomer scaffolds processed by fused deposition modeling and continuous liquid interface production. J Mech Behav Biomed Mater 75:1–13. https://doi.org/10.1016/j.jmbbm.2017.06.038

    Article  Google Scholar 

  38. Bakır A, Özerinç S (2020) Unpublished work

    Google Scholar 

  39. Hohimer C, Christ J, Aliheidari N, Mo C, Ameli A (2017) 3D printed thermoplastic polyurethane with isotropic material properties. Proceedings of SPIE Vol. 10165 Behavior and Mechanics of Multifunctional Materials and Composites 2017

    Google Scholar 

  40. Popescu D, Zapciu A, Amza C, Baciu F, Marinescu R (2018) FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym Testing 69:157–166. https://doi.org/10.1016/j.polymertesting.2018.05.020

    Article  Google Scholar 

  41. Bakır AA, Atik R, Özerinç S (2021) Effect of fused deposition modeling process parameters on the mechanical properties of recycled polyethylene terephthalate parts. J Appl Polym Sci 138:49709. https://doi.org/10.1002/app.49709

    Article  Google Scholar 

  42. Kaygusuz B, Özerinç S (2019) Improving the ductility of polylactic acid parts produced by fused deposition modeling through polyhydroxyalkanoate additions. J Appl Polym Sci 136:48154. https://doi.org/10.1002/app.48154

    Article  Google Scholar 

  43. Ahn S, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8:248–257. https://doi.org/10.1108/13552540210441166

    Article  Google Scholar 

  44. Bellehumeur C, Li L, Sun Q, Gu P (2004) Modeling of Bond Formation Between Polymer Filaments in the Fused Deposition Modeling Process. J Manuf Process 6:170–178. https://doi.org/10.1016/S1526-6125(04)70071-7

    Article  Google Scholar 

  45. Bakır AA, Atik R, Özerinç S (2020) Mechanical Properties of Thermoplastic Parts Produced by Fused Deposition Modeling: A Review. Rapid Prototyp J

    Google Scholar 

  46. Baich L, Manogharan G, Marie H (2015) Study of infill print design on production cost-time of 3D printed ABS parts. Int J Rapid Manuf 5:308–319. https://doi.org/10.1504/IJRAPIDM.2015.074809

    Article  Google Scholar 

  47. Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A, Samulski ET, DeSimone JM (2015) Continuous liquid interface production of 3D objects. Science 347:1349–1352. https://doi.org/10.1126/science.aaa2397

    Article  Google Scholar 

  48. Gibson IJ, Ashby MF (1982) The mechanics of three-dimensional cellular materials. Proc R Soc Lond Math Phys Sci 382:43–59. https://doi.org/10.1098/rspa.1982.0088

    Article  Google Scholar 

  49. Bakır AA, Atik R, Özerinç S Effect of fused deposition modeling process parameters on the mechanical properties of recycled polyethylene terephthalate parts. J Appl Polym Sci. https://doi.org/10.1002/app.49709

  50. Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: A review. Polymer 48:4907–4920. https://doi.org/10.1016/j.polymer.2007.06.046

    Article  Google Scholar 

  51. Mangaraj D (2002) Elastomer Blends. Rubber Chem Technol 75:365–427. https://doi.org/10.5254/1.3547677

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sezer Özerinç .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakır, A.A., Neshani, R., Özerinç, S. (2021). Mechanical Properties of 3D-Printed Elastomers Produced by Fused Deposition Modeling. In: Dave, H.K., Davim, J.P. (eds) Fused Deposition Modeling Based 3D Printing. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-68024-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68024-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68023-7

  • Online ISBN: 978-3-030-68024-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics