Skip to main content

Experimental Investigation on FDM Fabricated Tetra Chiral Auxetic Structures Under Uniaxial Compressive Loading

  • Chapter
  • First Online:
Fused Deposition Modeling Based 3D Printing

Abstract

This chapter describes an experimental investigation on tetra chiral auxetic structures subjected to uniaxial compressive loading. The structures of polyethylene terephthalate glycol-modified (PET-G) material are manufactured by material extrusion technique, fused deposition modeling (FDM). The influence of geometric parameters of structures on responses namely strength, stiffness, plateau stress and specific energy absorption (SEA) under compressive loading is investigated. Two geometric parameters namely thickness of ligament (t) and radius of cylinder (r) are considered. Full factorial design is used for designing the experiments and then experimental results are analysed using analysis of variance. It is found that the radius of cylinder has significant effect on structure’s compressive strength and compressive modulus. With increase in radius of cylinder, compressive strength and compressive modulus decrease. Both thickness and radius are found influential for plateau stress. As the thickness increases the plateau stress decreases but with an increase in radius the plateau stress increases. Both parameters are found significant for SEA of structure. As the thickness increases, the SEA decreases, but with an increase in radius SEA initially decreases and then increases. Predictive models are also developed to correlate responses with parameters. Further, multi-objective optimization is performed for maximization of responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gibson I, Rosen DW, Stucker B (2014) Additive manufacturing technologies, vol 17. Springer, New York

    Google Scholar 

  2. Li S, Hassanin H, Attallah MM, Adkins NJ, Essa K (2016) The development of TiNi-based negative Poisson’s ratio structure using selective laser melting. Acta Mater 105:75–83

    Article  Google Scholar 

  3. Alderson A, Rasburn J, Ameer-Beg S, Mullarkey PG, Perrie W, Evans KE (2000) An auxetic filter: a tuneable filter displaying enhanced size selectivity or defouling properties. Ind Eng Chem Res 39:654–665. https://doi.org/10.1021/ie990572w

    Article  Google Scholar 

  4. Bezazi A, Scarpa F (2007) Mechanical behaviour of conventional and negative poisson’s ratio thermoplastic polyurethane foams under compressive cyclic loading. Int J Fatigue 29:922–930. https://doi.org/10.1016/j.ijfatigue.2006.07.015

    Article  Google Scholar 

  5. Nicolais Jour L, Mir M, Ali MN, Sami J, Ansari U (2014) Review of mechanics and applications of auxetic structures SP—753496 VL-2014

    Google Scholar 

  6. Mir M, Ali MN, Sami J, Ansari U (2014) Review of mechanics and applications of auxetic structures. Adv Mater Sci Eng

    Google Scholar 

  7. Bettini P, Airoldi A, Sala G, Di Landro L, Ruzzene M, Spadoni A (2010) Composite chiral structures for morphing airfoils: numerical analyses and development of a manufacturing process. Compos B Eng 41(2):133–147

    Article  Google Scholar 

  8. Vyavahare S, Teraiya S, Panghal D, Kumar S (2019) Fused deposition modeling: a review. Rapid Prototyp J. https://doi.org/10.1108/RPJ-04-2019-0106

    Article  Google Scholar 

  9. Yu X, Zhou J, Liang H, Jiang Z, Wu L (2018) Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review. Prog Mater Sci 94:114–173

    Article  Google Scholar 

  10. Elipe JCÁ, Lantada AD (2012) Comparative study of auxetic geometries by means of computer-aided design and engineering. Smart Mater Struct 21(10):105004

    Article  Google Scholar 

  11. Zhang X, Yang D (2016) Mechanical properties of auxetic cellular material consisting of re-entrant hexagonal honeycombs. Materials 9(11):900

    Article  Google Scholar 

  12. Faludi J, Bayley C, Bhogal S, Iribarne M (2014) Comparing environmental impacts of additive manufacturing vs. traditional machining via life-cycle assessment. Laboratory for Manufacturing and Sustainability, UC, Berkeley

    Google Scholar 

  13. Grima JN, Gatt R, Alderson A, Evans KE (2005) On the potential of connected stars as auxetic systems. Mol Simul 31(13):925–935

    Article  Google Scholar 

  14. Alderson A, Alderson KL, Evans KE, Grima J. N, Williams MS (2005) Modelling of negative Poisson’s ratio nanomaterials: deformation mechanisms, structure-property relationships and applications. J Metastable Nanocrystalline Mater 23:55–58. Trans Tech Publications

    Google Scholar 

  15. Alderson A, Alderson KL, Attard D, Evans KE, Gatt R, Grima JN, Zied K (2010) Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Compos Sci Technol 70(7):1042–1048

    Article  Google Scholar 

  16. Javadi AA, Faramarzi A, Farmani R (2012) Design and optimization of the microstructure of auxetic materials. Eng Comput 29(3):260–276

    Article  Google Scholar 

  17. Assidi M, Ganghoffer JF (2012) Composites with auxetic inclusions showing both an auxetic behavior and enhancement of their mechanical properties. Compos Struct 94(8):2373–2382

    Article  Google Scholar 

  18. Chen YJ, Scarpa F, Liu YJ, Leng JS (2013) Elasticity of anti-tetrachiral anisotropic lattices. Int J Solids Struct 50(6):996–1004

    Article  Google Scholar 

  19. Ge Z, Hu H (2013) Innovative three-dimensional fabric structure with negative Poisson’s ratio for composite reinforcement. Text Res J 83(5):543–550

    Article  Google Scholar 

  20. Fanfan Y, Lingling H, Tongxi Y (2013) Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs. Mater Des 46:511–523. ISSN 0261-3069

    Google Scholar 

  21. Carneiro VH, Puga H, Meireles J (2016) Analysis of the geometrical dependence of auxetic behavior in re-entrant structures by finite elements. Acta Mechanica Sinica 32(2):295–300

    Article  MathSciNet  Google Scholar 

  22. Yang L, Harrysson O, West H, Cormier D (2015) Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. Int J Solids Struct 69:475–490

    Article  Google Scholar 

  23. Habib FN, Iovenitti P, Masood SH, Nikzad M (2017) In-plane energy absorption evaluation of 3D printed polymeric honeycombs. Virtual Phys Prototyp 12(2):117–131

    Article  Google Scholar 

  24. Li X, Lu Z, Yang Z, Yang C (2018) Anisotropic in-plane mechanical behavior of square honeycombs under off-axis loading. Mater Des 158:88–97

    Article  Google Scholar 

  25. Alomarah A, Masood SH, Sbarski I, Faisal B, Gao Z, Ruan D (2019) Compressive properties of 3D printed auxetic structures: experimental and numerical studies. Virtual Phys Prototyp 1–21

    Google Scholar 

  26. Qi C, Jiang F, Yu C, Yang S (2019) In-plane crushing response of tetra-chiral honeycombs. Int J Impact Eng 130:247–265

    Article  Google Scholar 

  27. Gebrehiwot SZ, Leonardo EL, Eickhoff JN et al (2020) The influence of stiffener geometry on flexural properties of 3D printed polylactic acid (PLA) beams. Prog Addit Manuf. https://doi.org/10.1007/s40964-020-00146-2

    Article  Google Scholar 

  28. Fashanu O, Murphy D, Spratt M et al (2020) Effective elastic properties of additively manufactured metallic cellular structures using numerical unit-cell homogenization. Prog Addit Manuf. https://doi.org/10.1007/s40964-020-00141-7

    Article  Google Scholar 

  29. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, New York

    Google Scholar 

  30. Lorato A, Innocenti P, Scarpa F et al (2010) The transverse elastic properties of chiral honeycombs. Compos Sci Technol 70 (7):1057–1063. ISSN 0266-3538

    Google Scholar 

  31. Vyavahare S, Kumar S, Panghal D (2020) Experimental study of surface roughness and dimensional accuracy of parts produced by Fused Deposition Modelling. Rapid Prototyp J. https://doi.org/10.1108/RPJ-12-2019-0315

    Article  Google Scholar 

  32. Scarpa F, Blain S, Lew T, Perrott D, Ruzzene M, Yates JR (2007) Elastic buckling of hexagonal chiral cell honeycombs. Compos A Appl Sci Manuf 38(2):280–289

    Article  Google Scholar 

  33. Xu J, Wu Y, Wang L, Li J, Yang Y, Tian Y, Gong Z, Zhang P, Nutt S, Yin S (2018) Compressive properties of hollow lattice truss reinforced honeycombs (Honeytubes) by additive manufacturing: patterning and tube alignment effects. Mater Des 156:446–457

    Article  Google Scholar 

  34. Raeisi S, Tapkir P, Ansari F, Tovar A (2019) Design of a hybrid honeycomb unit cell with enhanced in-plane mechanical properties (No. 2019-01-0710). SAE Technical Paper

    Google Scholar 

  35. Rao RV (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7(1):19–34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Vyavahare, S., Teraiya, S., Dhakar, L.C. (2021). Experimental Investigation on FDM Fabricated Tetra Chiral Auxetic Structures Under Uniaxial Compressive Loading. In: Dave, H.K., Davim, J.P. (eds) Fused Deposition Modeling Based 3D Printing. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-68024-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68024-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68023-7

  • Online ISBN: 978-3-030-68024-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics