Skip to main content

Simulation of Delamination Processes of Multilayer Mechanical Engineering Structures

  • Conference paper
  • First Online:
Advanced Manufacturing Processes II (InterPartner 2020)

Abstract

The article is devoted to the problems of numerical simulation of the delamination processes of multilayer spatial systems under static loading. The iterative-analytical theory of spatial multilayer structures is used. A particular multilayer eight-node finite element has been developed and numerically implemented. The solution of nonlinear problems is carried out based on the Newton-Kantorovich algorithm, supplemented by a block that implements an iterative-analytical method of variable approximations. A comparison of the results of numerical solutions with analytical solutions shows their good agreement. As an example of a semi-rigid coupling, results of the numerical modeling of elastic disks package deformations depending on changes in the coefficient of friction between the disks are given. The developed methods allow one to estimate reliably of the deformed state of multilayer elements of mechanical engineering equipment, depending on the change of physical and mechanical characteristics and parameters of material strength during the exploitation of its elements. Research results can be used to develop systems for supporting the lifecycle of mechanical engineering equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakharov, A.S., Kozak, A.L., Gondliakh, A.V., Melnikov, S.L.: Mathematical model of the deformation of multilayer composite shell systems. In: Strength of Materials and Theory of Structures, vol. 44, pp. 13–16 (1984)

    Google Scholar 

  2. Gondliakh, A.V.: Refined model of multilayer structures deformation for progressive destruction processes study. Eastern-Eur. J. Enterp. Technol. 2(7(56)), 52‒57 (2012)

    Google Scholar 

  3. Sakharov, A.S., Gondlyakh, A.V., Strizhalo, A.V.: On features of numerical integration for the equations of motion of laminated shell systems in the iterative analytic theory. Int. Appl. Mech. 33(9), 713–718 (1997)

    Article  Google Scholar 

  4. Piskunov, V.G.: An iterative analytical theory in the mechanics of layered composite systems. Mech. Compos. Mater. 39, 1–6 (2003)

    Article  Google Scholar 

  5. Tessler, A., Di Sciuva, M., Gherlone, M.: Refined zigzag theory for homogeneous, laminated composite, and sandwich plates: a homogeneous limit methodology for zigzag function selection. NASA, Langley Research Center Hampton (2010)

    Google Scholar 

  6. Tessler, A., Di Sciuva, M., Gherlone, M.: A consistent refinement of first-order shear deformation theory for laminated composite and sandwich plates using improved zigzag kinematics. J. Mech. Mater. Struct. 5(2), 341–367 (2010)

    Article  Google Scholar 

  7. Tessler, A., Di Sciuva, M., Gherlone, M.: A refined zigzag beam theory for composite and sandwich beams. J. Compos. Mater. 43(9), 1051–1081 (2009)

    Article  Google Scholar 

  8. Objois, A., Assih, J., Troalen, J.P.: Theoretical method to predict the first microcracks in a scarf joint. J. Adhes. 81(9), 893–909 (2005)

    Article  Google Scholar 

  9. Banks-Sills, L.: Interface Fracture and Delaminations in Composite Materials. Springer, Cham (2018)

    Book  Google Scholar 

  10. Pandurangan, P., Buckner, G.D.: Vibration analysis for damage detection in metal-to-metal adhesive joints. Exp. Mech. 46(5), 601–607 (2006)

    Article  Google Scholar 

  11. Martiny, P., Lani, F., Kinloch, A.J., Pardoen, T.: A multiscale parametric study of mode I fracture in metal-to-metal low-toughness adhesive joints. Int. J. Fract. 173, 105–133 (2012)

    Article  Google Scholar 

  12. Guz, A.N.: Establishing the foundations of the mechanics of fracture of materials compressed along cracks (review). Int. Appl. Mech. 50, 1–57 (2014)

    Article  MathSciNet  Google Scholar 

  13. Stevanovic, D., Kalyanasundaram, S., Lowe, A., Jarc, P.-Y.B.: FEA of crack–particle interactions during delamination in interlayer toughened polymer composites. Eng. Fract. Mech. 72(11), 1738–1769 (2005)

    Article  Google Scholar 

  14. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Mechanics. 6th edn. Butterworth-Heinemann (2005)

    Google Scholar 

  15. Ellobody, E., Feng, R., Young, B.: Finite Element Analysis and Design of Metal Structures, 1st edn. Imprint: Butterworth-Heinemann (2013)

    Google Scholar 

  16. Gondliakh, A.V.: Adaptation in ABAQUS of the iterated-analytical multilayer user finite element. Eastern-Eur. J. Enterp. Technol. 37(57), 62–68 (2012)

    Google Scholar 

  17. Li, W.D., Ma, M., Han, X., Tang, L.P., Zhao, J.N., Gao, E.P.: Strength prediction of adhesively bonded single lap joints under salt spray environment using a cohesive zone model. J. Adhes. 92(11), 916–937 (2016)

    Article  Google Scholar 

  18. Kafkalidis, M.S., Thouless, M.D.: The effects of geometry and material properties on the fracture of single lap-shear joints. Int. J. Solids Struct. 39(17), 4367–4383 (2002)

    Article  Google Scholar 

  19. Khokhar, Z.R., Ashcroft, I.A., Silberschmidt, V.V.: Interaction of matrix cracking and delamination in cross-ply laminates: simulations with stochastic cohesive zone elements. Appl. Compos. Mater. 18, 3–16 (2011)

    Article  Google Scholar 

  20. Maleki, S., Rafiee, R., Hasannia, A., Habibagahi, M.R.: Investigating the influence of delamination on the stiffness of composite pipes under compressive transverse loading using cohesive zone method. Front. Struct. Civ. Eng. 13, 1316–1323 (2019)

    Article  Google Scholar 

  21. Kesava Rao, B., Balu, A.S.: Assessment of cohesive parameters using high dimensional model representation for mixed mode cohesive zone model. Structures 19, 156–160 (2019)

    Article  Google Scholar 

  22. Silva, D.F.O., Campilho, R.D.S.G., Silva, F.J.G., Carvalho, U.T.F.: Application a direct/cohesive zone method for the evaluation of scarf adhesive joints. Appl. Adhes. Sci. 6(13) (2018)

    Google Scholar 

  23. Mubashar, A., Ashcroft, I.A., Crocombe, A.D.: Modelling damage and failure in adhesive joints using a combined XFEM-cohesive element methodology. J. Adhes. 90(8), 682–697 (2014)

    Article  Google Scholar 

  24. Pascoe, J.A., Alderliesten, R.C., Benedictus, R.: Methods for the prediction of fatigue delamination growth in composites and adhesive bonds - a critical review. Eng. Fract. Mech. 112–113, 72–96 (2013)

    Article  Google Scholar 

  25. Anyfantis, K.N., Tsouvalis, N.G.: A novel traction–separation law for the prediction of the mixed mode response of ductile adhesive joints. Int. J. Solids Struct. 49(1), 213–226 (2012)

    Article  Google Scholar 

  26. Turon, A., Davila, C.G., Camanho, P.P., Costa, J.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74(10), 1665–1682 (2007)

    Article  Google Scholar 

  27. Gondliakh, O., Onoprienko, V., Chemerys, A.: Numerical analysis of jerry can strength under static and dynamic loads. Eastern-Eur. J. Enterp. Technol. 3(7), 23–29 (2015). https://doi.org/10.15587/1729-4061.2015.4438323-29

    Article  Google Scholar 

  28. Gondliakh, O., Krytskyi, V., Onopriienko, V., Chemerys, A., Krytska, N.: Computer analysis of thermomechanical state of sealing steel lining for containment of NPPs with VVER-1000/V-320 in emergencies. Nucl. Radiat. Saf. 4(76), 28–39 (2017)

    Article  Google Scholar 

  29. Piskunov, V.G., Grynevyts’kyi, R.V.: Solution of the problem on the vibrations of beams with a variable cross section using the finite-difference method. Strength Mater. 44, 53–58 (2012)

    Google Scholar 

  30. Geleta, T.N., Woo, K., Lee, B.: Delamination behavior of L-shaped laminated composites. Int. J. Aeronaut. Space Sci. 19, 363–374 (2018)

    Article  Google Scholar 

  31. Abdellah, M.Y.: Delamination modeling of double cantilever beam of unidirectional composite laminates. J. Fail. Anal. Prev. 17, 1011–1018 (2017)

    Article  Google Scholar 

  32. Huchette, C., Vandellos, T., Laurin, F.: Influence of intralaminar damage on the delamination crack evolution. In: Riccio, A. (eds). Damage Growth in Aerospace Composites. Springer Aerospace Technology. Springer, Cham (2015)

    Google Scholar 

  33. Sakharov, A.S., Gondlyakh, A.V., Mel’nikov, S.L., Snitko, A.N.: Numerical modeling of processes of failure of multilayered composite shells. Mech. Compos. Mater. 25(3), 337–343 (1989)

    Article  Google Scholar 

  34. Van der Sluis, O., et al.: Advances in delamination modeling of metal/polymer systems: atomistic aspects. In: Morris, J. (ed.) Nanopackaging, pp. 129–183. Springer, Cham (2018)

    Chapter  Google Scholar 

  35. Beklemysheva, K.A., Vasyukov, A.V., Petrov, I.B.: Numerical modeling of delamination in fiber-metal laminates caused by low-velocity impact. In: Petrov, I., Favorskaya, A., Favorskaya, M., Simakov, S., Jain, L. (eds.) Smart Modeling for Engineering Systems. GCM50 2018. Smart Innovation, Systems and Technologies, vol. 133, pp. 132‒142. Springer, Cham (2019)

    Google Scholar 

  36. Jia, Y., Ghazali, S., Bai, Y.: Application of eMMC model to fracture of metal sheets. In: Zehnder, A., et al. (eds). Fracture, Fatigue, Failure and Damage Evolution, vol. 8, pp. 49‒55 (2017)

    Google Scholar 

  37. Lepikhin, A.M., Moskvichev, V.V., Chernyaev, A.P.: Acoustic-emission monitoring of the deformation and fracture of metal-composite pressure vessels. J. Appl. Mech. Tech. Phys. 59(3), 511–518 (2018)

    Article  Google Scholar 

  38. Gondliakh, O., Onoprienko, V., Nikitin, R.: Numerical Simulation of crack propagation in bimetallic spatial structures. Technol. Audit Prod. Reserves 3(1(17)), 23‒27 (2014)

    Google Scholar 

  39. Kolosov, A.E., Sivetskii, V.I., Kolosova, E.P., Vanin, V.V., Gondlyakh, A.V., Sidorov, D.E., Ivitskiy, I.I.: Creation of structural polymer composite materials for functional application using physicochemical modification. Adv. Polym. Technol. 12 (2019). https://doi.org/10.1155/2019/3501456

  40. Kolosov, A.E., Sivetskii, V.I., Kolosova, E.P., Vanin, V.V., Gondlyakh, A.V., Sidorov, D. E., Ivitskiy, I.I., Symoniuk, V.P.: Use of physico-chemical modification methods for producing of traditional and nanomodified polymeric composites with improved operational properties. Int. J. Polym. Sci. 18 (2019). https://doi.org/10.1155/2019/1258727

  41. Malinin, N.N.: Creep theories in metal forming. In: Sih, G.C., Ishlinsky, A.J., Mileiko, S.T. (eds.) Plasticity and Failure Behavior of Solids. Fatigue and Fracture, vol. 3, pp. 31–59. Springer, Dordrecht (1990)

    Chapter  Google Scholar 

  42. Rösler, J., Bäker, M., Harders, H.: Plasticity and failure. In: Mechanical Behaviour of Engineering Materials, pp. 63‒118. Springer, Heidelberg (2007)

    Google Scholar 

  43. Sidney, C., Charles, E.A., Borja, E.: A new plasticity and failure model for ballistic application. Int. J. Impact Eng. 38(8–9), 755‒764 (2011).

    Google Scholar 

  44. Erice, B., Gálvez, F.: A coupled elastoplastic-failure constitutive model with Lode angle dependent failure criterion. Int. J. Solids Struct. 51, 93–110 (2014)

    Article  Google Scholar 

  45. Kanters, MJW., Kurokawa, T., Govaert, L.E.: Competition between plasticity-controlled and crack-growth controlled failure in static and cyclic fatigue of thermoplastic polymer systems. Polym. Test. 50, 101‒110 (2016)

    Google Scholar 

  46. Abe, T., Tsuruta, T.: Advances in Engineering Plasticity and its Applications (AEPA '96). Elsevier (2012)

    Google Scholar 

  47. Pineau, A., Benzerga, A.A., Pardoen, T.: Failure of metals I - brittle and ductile fracture. Acta Mater. 107, 424–483 (2016)

    Article  Google Scholar 

  48. Buehler, M.: Atomistic Modeling of Materials Failure. Springer, Boston (2008)

    Book  Google Scholar 

  49. Tang, Yi., Bringa, E.M., Meyers, M.A.: Ductile tensile failure in metals through initiation and growth of nanosized voids. Acta Materialia 60, 4856–4865 (2012)

    Google Scholar 

  50. Matta, A.K., Kodali, S.P., Ivvala, J., Kumar, P.J.: Metal prototyping the future of automobile industry: a review. Mater. Today Proc. 5(9), 17597–17601 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Gondlyakh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gondlyakh, A., Chemeris, A., Kolosov, A., Sokolskiy, A., Antonyuk, S. (2021). Simulation of Delamination Processes of Multilayer Mechanical Engineering Structures. In: Tonkonogyi, V., et al. Advanced Manufacturing Processes II . InterPartner 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-68014-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68014-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68013-8

  • Online ISBN: 978-3-030-68014-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics