Skip to main content

Diet, Microbiome, Inflammation, and Cancer

  • Chapter
  • First Online:
Inflammation, Infection, and Microbiome in Cancers

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

Interactions between host nutrition, microbiota, and inflammation is an area of intense and growing interest to prevent or halt cancer. In complement to recent reviews focusing on the experimental evidence and the potential mechanisms underlying these relationships, this book chapter focuses on human observational and interventional studies of the microbiome as it relates to dietary patterns and key dietary factors with established links to inflammation and inflammation-driven cancers. Toward establishing causality in humans and the development of broadly beneficial targets, human prospective and interventional data bolster experimental models demonstrating that dietary components or patterns, at least in part, shape the composition of the gut microbiome and that diet and the gut microbiome, independently and collectively, modulate localized and systemic inflammation, as well as other critical pathways to cancer initiation and progression. Thus, dietary interventions, if capable of achieving timely and sufficient long-term behavior change, could theoretically be used to “improve” microbiome community structure and function and/or displace or reduce bacteria that promote cancer. Research focused on various parameters of microbiome-based personalized nutrition in cancer prevention and treatment is likely to continue to inform important targets and interactions that will shape clinical and public health practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agus A, Denizot J, Thévenot J, Martinez-Medina M, Massier S, Sauvanet P et al (2016) Western diet induces a shift in microbiota composition enhancing susceptibility to adherent-invasive E. coli infection and intestinal inflammation. Sci Rep 6:19032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong H, Bording-Jorgensen M, Dijk S, Wine E (2018) The complex interplay between chronic inflammation, the microbiome, and cancer: understanding disease progression and what we can do to prevent it. Cancers 10(3):83

    Article  PubMed Central  CAS  Google Scholar 

  • Bach Knudsen KE, Lærke HN, Hedemann MS, Nielsen TS, Ingerslev AK, Gundelund Nielsen DS et al (2018) Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients 10(10):1499

    Article  PubMed Central  CAS  Google Scholar 

  • Barone M, Turroni S, Rampelli S, Soverini M, D’Amico F, Biagi E et al (2019) Gut microbiome response to a modern Paleolithic diet in a Western lifestyle context. PLoS One 14(8):e0220619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat MI, Kapila R (2017) Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals. Nutr Rev 75(5):374–389

    Article  PubMed  Google Scholar 

  • Biesalski HK (2016) Nutrition meets the microbiome: micronutrients and the microbiota. Ann N Y Acad Sci 1372(1):53–64

    Article  PubMed  Google Scholar 

  • Bowyer RCE, Jackson MA, Pallister T, Skinner J, Spector TD, Welch AA et al (2018) Use of dietary indices to control for diet in human gut microbiota studies. Microbiome 6(1):77

    Article  PubMed  PubMed Central  Google Scholar 

  • Brennan CA, Garrett WS (2016) Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol 70(1):395–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brosnan JT, Brosnan ME (2006) The sulfur-containing amino acids: an overview. J Nutr 136(6 Suppl):1636s–1640s

    Article  CAS  PubMed  Google Scholar 

  • Brown K, DeCoffe D, Molcan E, Gibson DL (2012) Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 4(8):1095–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buford TW (2017) (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome 5(1):80

    Article  PubMed  PubMed Central  Google Scholar 

  • Bultman SJ (2017) Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Mol Nutr Food Res 61(1):1500902

    Article  CAS  Google Scholar 

  • Chen HM, Yu YN, Wang JL, Lin YW, Kong X, Yang CQ et al (2013) Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am J Clin Nutr 97(5):1044–1052

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Pitmon E, Wang K (2017) Microbiome, inflammation and colorectal cancer. Semin Immunol 32:43–53

    Article  CAS  PubMed  Google Scholar 

  • Chiang JYL, Ferrell JM (2018) Bile acid metabolism in liver pathobiology. Gene Expr 18(2):71–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemente JC, Manasson J, Scher JU et al (2018) BMJ 360:j5145

    Article  PubMed  PubMed Central  Google Scholar 

  • Conlon MA, Bird AR (2014) The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7(1):17–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniel CR, McQuade JL (2019) Nutrition and cancer in the microbiome era. Trends Cancer 5(9):521–524

    Article  PubMed  Google Scholar 

  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563

    Article  CAS  PubMed  Google Scholar 

  • Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R, Geis AL et al (2018) Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359(6375):592–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340

    Article  CAS  Google Scholar 

  • Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M et al (2016) A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167(5):1339–53.e21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duytschaever G, Huys G, Bekaert M, Boulanger L, De Boeck K, Vandamme P (2013) Dysbiosis of bifidobacteria and Clostridium cluster XIVa in the cystic fibrosis fecal microbiota. J Cyst Fibros 12(3):206–215

    Article  PubMed  Google Scholar 

  • Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K et al (2016) Population-level analysis of gut microbiome variation. Science 352(6285):560–564

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM et al (2018) Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 67(1):120–127

    Article  CAS  PubMed  Google Scholar 

  • Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D et al (2012) Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 61(4):582–588

    Article  CAS  PubMed  Google Scholar 

  • Fava F, Gitau R, Griffin BA, Gibson GR, Tuohy KM, Lovegrove JA (2013) The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int J Obes 37(2):216–223

    Article  CAS  Google Scholar 

  • Febvre HP, Rao S, Gindin M, Goodwin NDM, Finer E, Vivanco JS et al (2019) PHAGE study: effects of supplemental bacteriophage intake on inflammation and gut microbiota in healthy adults. Nutrients 11(3):20

    Article  CAS  Google Scholar 

  • Fessler J, Matson V, Gajewski TF (2019) Exploring the emerging role of the microbiome in cancer immunotherapy. J Immunother Cancer 7(1):108

    Article  PubMed  PubMed Central  Google Scholar 

  • Fruge AD, Ptacek T, Tsuruta Y, Morrow CD, Azrad M, Desmond RA et al (2018) Dietary changes impact the gut microbe composition in overweight and obese men with prostate cancer undergoing radical prostatectomy. J Acad Nutr Diet 118(4):714–23.e1

    Article  PubMed  Google Scholar 

  • Ganesan K, Chung SK, Vanamala J, Xu B (2018) Causal relationship between diet-induced gut microbiota changes and diabetes: a novel strategy to transplant faecalibacterium prausnitzii in preventing diabetes. Int J Mol Sci 19(12):3720

    Article  PubMed Central  CAS  Google Scholar 

  • Garcia-Mantrana I, Selma-Royo M, Alcantara C, Collado MC (2018) Shifts on gut microbiota associated to Mediterranean diet adherence and specific dietary intakes on general adult population. Front Microbiol 9:890

    Article  PubMed  PubMed Central  Google Scholar 

  • Gobert AP, Sagrestani G, Delmas E, Wilson KT, Verriere TG, Dapoigny M et al (2016) The human intestinal microbiota of constipated-predominant irritable bowel syndrome patients exhibits anti-inflammatory properties. Sci Rep 6:39399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Navajas JM, Bellot P, Frances R, Zapater P, Munoz C, Garcia-Pagan JC et al (2008) Presence of bacterial-DNA in cirrhosis identifies a subgroup of patients with marked inflammatory response not related to endotoxin. J Hepatol 48(1):61–67

    Article  CAS  PubMed  Google Scholar 

  • Hakansson A, Molin G (2011) Gut microbiota and inflammation. Nutrients 3(6):637–682

    Article  PubMed  PubMed Central  Google Scholar 

  • Hale VL, Jeraldo P, Chen J, Mundy M, Yao J, Priya S et al (2018) Distinct microbes, metabolites, and ecologies define the microbiome in deficient and proficient mismatch repair colorectal cancers. Genome Med 10(1):78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada T, Zhang X, Mima K, Bullman S, Sukawa Y, Nowak JA et al (2018) Fusobacterium nucleatum in colorectal cancer relates to immune response differentially by tumor microsatellite instability status. Cancer Immunol Res 6(11):1327–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes RB, Ahn J, Fan X, Peters BA, Ma Y, Yang L et al (2018) Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol 4(3):358–365

    Article  PubMed  PubMed Central  Google Scholar 

  • Hibberd AA, Lyra A, Ouwehand AC, Rolny P, Lindegren H, Cedgård L et al (2017) Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol 4(1):e000145

    Article  PubMed  PubMed Central  Google Scholar 

  • Hills RD, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR (2019) Gut microbiome: profound implications for diet and disease. Nutrients 11(7):1613

    Article  CAS  PubMed Central  Google Scholar 

  • Holscher HD, Guetterman HM, Swanson KS, An R, Matthan NR, Lichtenstein AH et al (2018) Walnut consumption alters the gastrointestinal microbiota, Microbially derived secondary bile acids, and health markers in healthy adults: a randomized controlled trial. J Nutr 148(6):861–867

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang P, Liu Y (2019) A reasonable diet promotes balance of intestinal microbiota: prevention of precolorectal cancer. Biomed Res Int 2019:10

    Google Scholar 

  • Ilic M, Ilic I (2016) Epidemiology of pancreatic cancer. World J Gastroenterol 22(44):9694–9705

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato I, Vasquez A, Moyerbrailean G, Land S, Djuric Z, Sun J et al (2017) Nutritional correlates of human oral microbiome. J Am Coll Nutr 36(2):88–98

    Article  CAS  PubMed  Google Scholar 

  • Klement RJ, Pazienza V (2019) Impact of different types of diet on gut microbiota profiles and cancer prevention and treatment. Medicina (Kaunas, Lithuania) 55(4):84

    Article  Google Scholar 

  • Klimenko NS, Tyakht AV, Popenko AS, Vasiliev AS, Altukhov IA, Ischenko DS et al (2018) Microbiome responses to an uncontrolled short-term diet intervention in the frame of the citizen science project. Nutrients 10(5):576

    Article  PubMed Central  CAS  Google Scholar 

  • Korem T, Zeevi D, Zmora N, Weissbrod O, Bar N, Lotan-Pompan M et al (2017) Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab 25(6):1243–53.e5

    Article  CAS  PubMed  Google Scholar 

  • Koropatkin NM, Cameron EA, Martens EC (2012) How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol 10(5):323–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M et al (2013) Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14(2):207–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushi LH, Doyle C, McCullough M, Rock CL, Demark-Wahnefried W, Bandera EV et al (2012) American cancer society guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin 62(1):30–67

    Article  PubMed  Google Scholar 

  • Lachnit T, Bosch TCG, Deines P (2019) Exposure of the host-associated microbiome to nutrient-rich conditions may lead to dysbiosis and disease development—an evolutionary perspective. mBio 10(3):e00355-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang JM, Pan C, Cantor RM, Tang WHW, Garcia-Garcia JC, Kurtz I et al (2018) Impact of individual traits, saturated fat, and protein source on the gut microbiome. mBio 9(6):e01604–e01618

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Roy CI, Wells PM, Si J, Raes J, Bell JT, Spector TD (2020) Red wine consumption associated with increased gut microbiota alpha-diversity in 3 independent cohorts. Gastroenterology 158(1):270–2.e2

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Tabung FK, Zhang X, Nowak JA, Qian ZR, Hamada T et al (2018) Diets that promote colon inflammation associate with risk of colorectal carcinomas that contain fusobacterium nucleatum. Clin Gastroenterol Hepatol 16(10):1622–31.e3

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Ajami NJ, El-Serag HB, Hair C, Graham DY, White DL et al (2019) Dietary quality and the colonic mucosa-associated gut microbiome in humans. Am J Clin Nutr 110(3):701–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Llopis M, Cassard AM, Wrzosek L, Boschat L, Bruneau A, Ferrere G et al (2016) Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut 65(5):830–839

    Article  CAS  PubMed  Google Scholar 

  • Loomba R, Seguritan V, Li W, Long T, Klitgord N, Bhatt A et al (2017) Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metabolism 25(5):1054–62.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12(10):661–672

    Article  CAS  PubMed  Google Scholar 

  • Lu R, Wu S, Zhang YG, Xia Y, Liu X, Zheng Y et al (2014) Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway. Oncogenesis 3:e105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maskarinec G, Hullar MAJ, Monroe KR, Shepherd JA, Hunt J, Randolph TW et al (2019) Fecal microbial diversity and structure are associated with diet quality in the multiethnic cohort adiposity phenotype study. J Nutr 149(9):1575–1584

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehta RS, Nishihara R, Cao Y, Song M, Mima K, Qian ZR et al (2017) Association of dietary patterns with risk of colorectal cancer subtypes classified by fusobacterium nucleatum in tumor tissue. JAMA Oncol 3(7):921–927

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng X, Li S, Li Y, Gan R-Y, Li H-B (2018) Gut Microbiota’s relationship with liver disease and role in hepatoprotection by dietary natural products and probiotics. Nutrients 10(10):1457

    Article  PubMed Central  CAS  Google Scholar 

  • Menni C, Zierer J, Pallister T, Jackson MA, Long T, Mohney RP et al (2017) Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women. Sci Rep 7(1):11079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minemura M, Shimizu Y (2015) Gut microbiota and liver diseases. World J Gastroenterol 21(6):1691–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuhashi K, Nosho K, Sukawa Y, Matsunaga Y, Ito M, Kurihara H et al (2015) Association of fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget 6(9):7209–7220

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7(3):189–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Mouzaki M, Comelli EM, Arendt BM, Bonengel J, Fung SK, Fischer SE et al (2013) Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 58(1):120–127

    Article  CAS  PubMed  Google Scholar 

  • Muller M, Canfora EE, Blaak EE (2018) Gastrointestinal transit time, glucose homeostasis and metabolic health: modulation by dietary fibers. Nutrients 10(3):275

    Article  PubMed Central  CAS  Google Scholar 

  • Nguyen TT, Ung TT, Kim NH, Jung YD (2018) Role of bile acids in colon carcinogenesis. World J Clin Cases 6(13):577–588

    Article  PubMed  PubMed Central  Google Scholar 

  • Nosho K, Sukawa Y, Adachi Y, Ito M, Mitsuhashi K, Kurihara H et al (2016) Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J Gastroenterol 22(2):557–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Keefe SJD (2016) Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol 13(12):691–706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Keefe SJ, Li JV, Lahti L, Ou J, Carbonero F, Mohammed K et al (2015) Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun 6:6342

    Article  PubMed  CAS  Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2(5):270–278

    Article  Google Scholar 

  • Peters BA, Wu J, Pei Z, Yang L, Purdue MP, Freedman ND et al (2017) Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res 77(23):6777–6787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters BA, McCullough ML, Purdue MP, Freedman ND, Um CY, Gapstur SM et al (2018) Association of coffee and tea intake with the oral microbiome: results from a large cross-sectional study. Cancer Epidemiol Biomarkers Prev 27(7):814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pevsner-Fischer M, Tuganbaev T, Meijer M, Zhang S-H, Zeng Z-R, Chen M-H et al (2016) Role of the microbiome in non-gastrointestinal cancers. World J Clin Oncol 7(2):200–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Polk DB, Peek RM (2010) Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 10(6):403–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quévrain E, Maubert MA, Michon C, Chain F, Marquant R, Tailhades J et al (2016) Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65(3):415–425

    Article  PubMed  CAS  Google Scholar 

  • Riviere A, Selak M, Lantin D, Leroy F, De Vuyst L (2016) Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front Microbiol 7:979

    Article  PubMed  PubMed Central  Google Scholar 

  • Roager HM, Vogt JK, Kristensen M, Hansen LBS, Ibrugger S, Maerkedahl RB et al (2019) Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial. Gut 68(1):83–93

    Article  CAS  PubMed  Google Scholar 

  • Ryoo SK, Kim TJ, Kim ER, Hong SN, Kim YH, Chang DK (2019) Helicobacter pylori infection and the development of advanced colorectal neoplasia. J Clin Gastroenterol 54(8):696–700

    Article  CAS  Google Scholar 

  • Schwabe RF, Jobin C (2013) The microbiome and cancer. Nat Rev Cancer 13(11):800–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott AJ, Alexander JL, Merrifield CA, Cunningham D, Jobin C, Brown R et al (2019) International cancer microbiome consortium consensus statement on the role of the human microbiome in carcinogenesis. Gut 68(9):1624–1632

    Article  CAS  PubMed  Google Scholar 

  • Shmuely H, Melzer E, Braverman M, Domniz N, Yahav J (2014) Helicobacter pylori infection is associated with advanced colorectal neoplasia. Scand J Gastroenterol 49(1):35–42

    Article  PubMed  Google Scholar 

  • Signoretti M, Roggiolani R, Stornello C, Delle Fave G, Capurso G (2017) Gut microbiota and pancreatic diseases. Minerva Gastroenterol Dietol 63(4):399–410

    PubMed  Google Scholar 

  • Singh SB, Lin HC (2015) Hydrogen sulfide in physiology and diseases of the digestive tract. Microorganisms 3(4):866–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K et al (2017) Influence of diet on the gut microbiome and implications for human health. J Transl Med 15(1):73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh R, Chandrashekharappa S, Bodduluri SR, Baby BV, Hegde B, Kotla NG et al (2019) Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun 10(1):89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song M, Chan AT (2017) Diet, gut microbiota, and colorectal cancer prevention: a review of potential mechanisms and promising targets for future research. Curr Colorectal Cancer Rep 13(6):429–439

    Article  PubMed  PubMed Central  Google Scholar 

  • Song M, Chan AT (2019) Environmental factors, gut microbiota, and colorectal cancer prevention. Clin Gastroenterol Hepatol 17(2):275–289

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Chen Y, Cheng M, Zhang X, Zheng X, Zhang Z (2018) The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro. J Food Sci Technol 55(1):399–407

    Article  CAS  PubMed  Google Scholar 

  • Tabung FK, Birmann BM, Epstein MM, Martínez-Maza O, Breen EC, Wu K et al (2017) Influence of dietary patterns on plasma soluble CD14, a surrogate marker of gut barrier dysfunction. Curr Dev Nutr 1(11):e001396

    Article  PubMed  PubMed Central  Google Scholar 

  • Telle-Hansen VH, Holven KB, Ulven SM (2018) Impact of a healthy dietary pattern on gut microbiota and systemic inflammation in humans. Nutrients 10(11):1783

    Article  PubMed Central  CAS  Google Scholar 

  • Tilg H, Adolph TE, Gerner RR, Moschen AR (2018) The intestinal microbiota in colorectal cancer. Cancer Cell 33(6):954–964

    Article  CAS  PubMed  Google Scholar 

  • Tilg H, Zmora N, Adolph TE, Elinav E (2020) The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol 20(1):40–54

    Article  CAS  PubMed  Google Scholar 

  • Trikudanathan G, Philip A, Dasanu CA, Baker WL (2011) Association between helicobacter pylori infection and pancreatic cancer. A cumulative meta-analysis. J Pancreas 12(1):26–31

    Google Scholar 

  • Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B et al (2018) The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 15(7):397–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsoi H, Chu ESH, Zhang X, Sheng J, Nakatsu G, Ng SC et al (2017) Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology 152(6):1419–33.e5

    Article  PubMed  Google Scholar 

  • Van den Abbeele P, Belzer C, Goossens M, Kleerebezem M, De Vos WM, Thas O et al (2013) Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J 7(5):949–961

    Article  PubMed  CAS  Google Scholar 

  • Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J (2016) Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65(1):57–62

    Article  CAS  PubMed  Google Scholar 

  • Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S et al (2019) Gut microbiota and cancer: from pathogenesis to therapy. Cancers (Basel) 11(1):38

    Article  CAS  Google Scholar 

  • Wahlstrom A, Sayin SI, Marschall HU, Backhed F (2016) Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24(1):41–50

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Molin G, Ahrne S, Adawi D, Jeppsson B (2007) High proportions of proinflammatory bacteria on the colonic mucosa in a young patient with ulcerative colitis as revealed by cloning and sequencing of 16S rRNA genes. Dig Dis Sci 52(3):620–627

    Article  CAS  PubMed  Google Scholar 

  • Wang X-Q, Zhang A-H, Miao J-H, Sun H, Yan G-L, Wu F-F et al (2018) Gut microbiota as important modulator of metabolism in health and disease. RSC Adv 8(74):42380–42389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Z, Cao S, Liu S, Yao Z, Sun T, Li Y et al (2016) Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients’ survival? A pilot study on relevant mechanism. Oncotarget 7(29):46158–46172

    Article  PubMed  PubMed Central  Google Scholar 

  • Whisner CM, Aktipis AC (2019) The role of the microbiome in cancer initiation and progression: how microbes and cancer cells utilize excess energy and promote one another’s growth. Curr Nutr Rep 8(1):42–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson MR, Jiang Y, Villalta PW, Stornetta A, Boudreau PD, Carrá A et al (2019) The human gut bacterial genotoxin colibactin alkylates DNA. Science 363(6428):eaar7785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Cancer Research Fund, American Institute for Cancer Research (2018) Diet, nutrition, physical activity and cancer: a global perspective. Continuous update project expert report 2018. World Cancer Research Fund/American Institute for Cancer Research, London

    Google Scholar 

  • Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K et al (2016) Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 65(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Li Q, Fu X (2019) Fusobacterium nucleatum contributes to the carcinogenesis of colorectal cancer by inducing inflammation and suppressing host immunity. Transl Oncol 12(6):846–851

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Knight R (2015) Dietary effects on human gut microbiome diversity. Br J Nutr 113 Suppl(Suppl 0):S1–S5

    Article  PubMed  CAS  Google Scholar 

  • Yan AW, Schnabl B (2012) Bacterial translocation and changes in the intestinal microbiome associated with alcoholic liver disease. World J Hepatol 4(4):110–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Yazici C, Wolf PG, Kim H, Cross T-WL, Vermillion K, Carroll T et al (2017) Race-dependent association of sulfidogenic bacteria with colorectal cancer. Gut 66(11):1983–1994

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Wang R, Bhattacharya R, Boulbes DR, Fan F, Xia L et al (2017) Fusobacterium nucleatum subspecies animalis influences proinflammatory cytokine expression and monocyte activation in human colorectal tumors. Cancer Prev Res (Phila) 10(7):398–409

    Article  CAS  Google Scholar 

  • Yu J, Chen Y, Fu X, Zhou X, Peng Y, Shi L et al (2016) Invasive fusobacterium nucleatum may play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway. Int J Cancer 139(6):1318–1326

    Article  CAS  PubMed  Google Scholar 

  • Zambirinis CP, Pushalkar S, Saxena D, Miller G (2014) Pancreatic cancer, inflammation, and microbiome. Cancer J 20(3):195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A et al (2015) Personalized nutrition by prediction of glycemic responses. Cell 163(5):1079–1094

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Umar S, Rust B, Lazarova D, Bordonaro M (2019) Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiome, cell proliferation, inflammation, and cancer. Int J Mol Sci 20(5):1214

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang Y, Kang C, Wang XL, Zhou M, Chen MT, Zhu XH et al (2018) Dietary factors modulate colonic tumorigenesis through the interaction of gut microbiota and host chloride channels. Mol Nutr Food Res 62(5). https://doi.org/10.1002/mnfr.201700554

  • Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T et al (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352(6285):565–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer J, Lange B, Frick JS, Sauer H, Zimmermann K, Schwiertz A et al (2012) A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr 66(1):53–60

    Article  CAS  PubMed  Google Scholar 

  • Zitvogel L, Pietrocola F, Kroemer G (2017a) Nutrition, inflammation and cancer. Nat Immunol 18(8):843–850

    Article  CAS  PubMed  Google Scholar 

  • Zitvogel L, Daillere R, Roberti MP, Routy B, Kroemer G (2017b) Anticancer effects of the microbiome and its products. Nat Rev Microbiol 15(8):465–478

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrie R. Daniel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The American Physiological Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, X., Daniel, C.R. (2021). Diet, Microbiome, Inflammation, and Cancer. In: Sun, J. (eds) Inflammation, Infection, and Microbiome in Cancers. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-67951-4_11

Download citation

Publish with us

Policies and ethics